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Abstract

This paper describes how the potential coupling of a set varies as the set is transformed, that is, as
elements are added and removed. The equations governing the changes caused by these transformations are
derived and briefly analysed.
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1. Introduction

The potential coupling of a set was introduced in [1], which derived the equations for the potential
coupling of any given set of absolute information hiding. These equations, however, were static, offering no
insight into the evolution of a set over time.

This paper addresses this evolutionary aspect by deriving the equations which describe not the
overall potential coupling of a set but the changes in potential coupling as a set undergoes an arbitrary series
of transformations.

This paper considers sets of absolute information hiding only.

2. Standard deviation

Before examining the transformation equations themselves, let us preform some experiments whose
results we shall compare with those we might intuitively expect.

Proposition 1.11 in [1] showed that, given two otherwise equivalent sets, both of which uniformly
distributed in violational elements, the set whose information-hidden elements are non-uniformly distributed
over disjoint primary sets can never have a potential coupling of less than that of the set with uniformly
distributed information-hidden elements.

This may be understood qualitatively by considering the internal potential coupling of a disjoint
primary set which, as also shown in [1], was shown to be proportional to the square of the number of
elements in that disjoint primary set. Thus consider a set of uniformly distributed elements where each
disjoint primary set has 10 elements; each disjoint primary set will have an internal potential coupling of 90
(=10* - 10). An element moved from one disjoint primary set to another will (in a sense we shall later define
precisely) increase the, "Non-evenness," of the distribution: now one disjoint primary set will have 11
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elements and an internal potential coupling of 110 (=11% - 11), whereas the donor disjoint primary set will
have an internal potential coupling of 72 (=9 - 9): moving this element has caused an overall internal
potential coupling increase of 2.

Loosely speaking, being proportional to the square of the number of elements in a disjoint primary
set, the internal potential coupling tends to amplify deviations from uniform distribution, so the more non-
uniformly distributed a set is, the greater its potential coupling.

Can we investigate this relationship more formally? Can we rigorously measure this, "Unevenness?"

Indeed we can, by using a tool of the statistician: the standard deviation. The standard deviation
measures how widely spread the values in a dataset are. We shall use it first to measure how widely spread
the number of information-hidden elements per disjoint primary set is, that is, to measure the hidden element
distribution.

If we take a set of r disjoint primary sets where x; is the number of hidden elements in the i disjoint
primary set and where X 1is the average number of hidden elements per disjoint primary set, then the
standard deviation is defined by the equation:

The standard deviation of the hidden element distribution for a uniformly distributed set is O; this
figure then rises as the set becomes increasingly non-uniformly distributed.

Instead of examining how the potential coupling behaves as the standard deviation of the hidden
element distribution increases, however, it is useful to instead examine how the isoledensal configuration
efficiency (also defined in [1]) behaves, as the configuration efficiency, being defined between 0 and 1, helps
to normalise the trend for sets of different cardinalities. Thus, whereas we expect that the potential coupling
of a set will rise as the standard deviation of its hidden element distribution increases, we expect the
configuration efficiency of that set to fall as its standard deviation increases.

Finally, we need only state the actual means of increasing the non-uniformity of a set's distribution.
We shall begin not with a perfectly uniformly distributed set but with a set of, say, 100 disjoint primary sets,
each disjoint primary set having one violational element, and a random number - between 0 and 30 - of
information-hidden elements.

Being non-uniformly distributed the set will have a non-zero standard deviation of hidden element
distribution. We shall then take one hidden element from a disjoint primary set and move it to an arbitrarily
designated target disjoint primary set. We shall record the change in the hidden element distribution standard
deviation and its resulting change in configuration efficiency. We shall then move a second hidden element
from a disjoint primary set into the target disjoint primary set and perform the measurement again. This shall
be repeated until all the hidden elements of the set are in the target disjoint primary set, thus maximising the
hidden element distribution standard deviation.

Figure 1 shows the resulting configuration efficiency plotted as a function of the changing hidden
element distribution standard deviation.
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Figure 1: Isoledensal configuration efficiency as a function of increasing standard deviation of the hidden
element distribution.

This figure shows the expected result: the isoledensal configuration efficiency falls as the hidden
element distribution standard deviation increases, i.e., as the set becomes increasingly non-uniformly
distributed in hidden elements.

To show a slightly broader example of this trend, Figure 2 shows a further ten randomly-generated
sets subjected to the same experiment.
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Figure 2: Isoledensal configuration efficiency as a function of increasing standard deviation, multiple sets.

We shall now examine the five transformation equations and attempt to confirm the above results in
terms of the appropriate equation.

3. The transformation equations

From the point of view of investigating changes in potential coupling there are only two fundamental



transformations we can make to any set: we can add a given number of violational elements to a disjoint
primary set and we can add a given number of information-hidden elements to a disjoint primary set. Let us
denote this, "Given number," m.

It may seem that we could also transform a set by adding a disjoint primary set itself, but in
encapsulation theory dependencies can only be formed between elements, not disjoint primary sets, and so
adding any number of empty disjoint primary sets cannot change the potential coupling of that set. Of course,
by definition, no element can exist outside a disjoint primary set, so these transformations therefore presume,
where necessary, the existence of an empty disjoint primary set into which new elements may be introduced.

Although only two transformations are fundamental, it is possible to derive a further three
transformations from these two fundamental transformations. These three derived transformations both cover
common changes to sets and yield insight into the nature of the changing potential coupling The three
derived transformations are: moving m violational elements from one disjoint primary set to another, moving
m information-hidden elements from one disjoint primary set to another, and converting m information-
hidden elements in a disjoint primary set into m violational elements.

We note that m may be negative and we establish the convention that adding a negative number of
elements to a disjoint primary set may be interpreted as removing |m| elements from that disjoint primary
set. Where m is negative, it may not exceed the number of elements that actually reside within a disjoint
primary set: no disjoint primary set may contain a negative number of elements at any time.

Before proceeding, we recall the definitions of the terms from [1]:
G :asetas defined in [D1.1] - [D1.5] of [1].
|V‘ : The number of violational elements in set G.

K., K and K, : disjoint primary sets in set G. K. is used when only one disjoint primary set is
involved. Translation transformations involve two disjoint primary sets: K is the source disjoint primary set
from which elements are moved, K, is the target disjoint primary set to which elements are moved.

K.
v(K,)

: The total number of elements in disjoint primary set K.

: The number of violational elements in disjoint primary set K.

n : the total number of elements in a set.

Finally, we introduce two functions. The function ‘A s(G )‘ will represent the change of potential
coupling of set G due to the application of some transformation. The function i(K,) will represent the
number of information-hidden elements in disjoint primary set K.

Box 1 lists the five transformation equations.
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IAs(G)=m(n+ ‘K x‘ +|v|- |v (K )J+m—1) The information-hiding violation transformation
equation (see proposition 3.11), which gives the change of potential coupling of a set G when m
violational elements are added to disjoint primary set K.

2. |As(G)=m(V]-|v(K )+2|K,
(see proposition 3.17), which gives the change of potential coupling of a set G when m information-
hidden elements are added to disjoint primary set K.

+m—1) The information-hidden transformation equation

3. ‘A Scumularive<G)|:m(‘h(Kt)‘_|h<Ks)
transformation equation (see proposition 3.18), which gives the change of potential coupling of a set
G when m violational elements are moved from source disjoint primary set K; to a different target
disjoint primary set K.

) The information-hiding violation translation

4. A Sc‘umulative(G)lz m(2 ‘Kt| -2 |KS‘ +|v (K,) —|v ( KI)| +2m) The information-hidden translation
transformation equation (see proposition 3.19), which gives the change of potential coupling of a set
G when m information-hidden elements are moved from source disjoint primary set K to a different
target disjoint primary set K..

5. A swmulam(Gﬂ: m(n— |K ) The conversion transformation equation (see proposition 3.20),

which gives the change of potential coupling when m information-hidden elements are converted
into violational elements.

Box 1: The five transformation equations.

4. Reflections on the equations

4.1 The non-conservative transformation equations

Consider the first two transformation equations. These are the fundamental equations and they are
non-conservative in that they change the total number of elements in the set; the other three equations are
conservative in that they do not change the total number of elements in the set.

Perhaps the most interesting aspect of the two non-conservative transformation equations is that it is
trivial to show (by subtracting the second from the first) that adding a violational element to a set causes a
larger increase in potential coupling than adding a hidden element, as we intuitively expect.

4.2 The translation transformation equations

The third and fourth equations are derived from the first two. These equations are translation
equations in that they show how potential coupling changes as elements are translated or moved from one
disjoint primary set to another. We shall examine them in reverse order.

4.2.1 The fourth equation

Consider the fourth transformation equation, describing the change of potential coupling as
information-hidden elements are moved between disjoint primary sets. This is the equation governing the
changes that we found in section 2, where all the hidden elements of a set were incrementally translated from
their original disjoint primary sets to a specific target disjoint primary set, thereby maximising the standard
deviation of the hidden element distribution.

If we look at the terms of the fourth equation, we see that there are three components of the potential



coupling change (ignoring the common scaling m factor):

0 2|k |-2|K,
i) [v(K,)|—|(K,)
>iiil) 2m

The 2m component is clearly independent of the disjoint primary sets affected by the transformation.

Component (i) is the difference in the total number of elements (multiplied by two) between the
source and target disjoint primary sets.

Component (ii) is the difference in the number of violational elements between the source and target
disjoint primary sets, though in the opposite sense of component (i) in that component (i) is target minus
source but component (ii) is source minus target.

The interaction between these two components is complicated, but in our experiment in section 2, we
moved more and more hidden elements into a single, target disjoint primary set, causing the target disjoint
primary set to become increasingly large while its violational elements remained unchanged: thus component
(i) grew to dominate component (ii) and repeated translations increasingly added to the potential coupling of
the set. Increasing the potential coupling of a fixed number of elements by definition decreases the set's
configuration efficiency and this is precisely figures 1 and 2 show.

The reverse is also true: moving information-hidden elements from a larger to a smaller disjoint
primary set must necessarily decrease the potential coupling of a set and thus increase the configuration
efficiency. This explains why a set of uniformly distributed hidden elements cannot have a potential coupling
greater than one of non-uniformly distributed hidden elements (all else being equal).

4.2.2. The third equation

Whereas the fourth transformation moved information-hidden elements between disjoint primary
sets, the third transformation moves violational elements between disjoint primary sets.

We might expect this equation to yield results quite similar to the fourth equation given that they are
both translation transformations, but this is not the case. To investigate this curious difference we shall
perform another experiment.

In section 2 we plotted the falling configuration efficiency of a set as its hidden elements were
increasingly piled into just one disjoint primary set. Let us perform a similar experiment but this time we
shall incrementally move only the violational elements into one disjoint primary set. (A minor difference in
procedure must be observed: every disjoint primary set must contain at least one violational element as
otherwise it is uncontactable by elements in other disjoint primary sets, so instead of moving all violational
elements from the source disjoint primary sets, we shall move all but one violational element. This difference
in itself should not significantly alter the outcome.)

Let us again take a set of 100 disjoint primary sets. In section 2 we put one violational element in
each disjoint primary set and put a random number - between 0 and 30 - of information-hidden elements in
each disjoint primary set. For our new experiment we shall do the opposite, putting one information-hidden
element in each disjoint primary set and putting a random number - between 1 and 30 - of violational
elements in each disjoint primary set.

In section 2, it was the standard deviation of the hidden element distribution that we measured; this
time we shall measure the standard deviation of the violational element distribution: the number of
violational elements per disjoint primary set. Incrementally moving one violational element into one target
disjoint primary set will repeatedly increase the standard deviation of the violational element distribution of
the entire set. The question is: how will the configuration efficiency change as the standard deviation of the
violational element distribution increases? The result is shown in figure 3.
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Figure 3: Isoledensal configuration efficiency as a function of increasing standard deviation of the
violational element distribution.

Figure 3 reveals two aspects that call for explanation but only one is relevant here. Firstly, the low the
configuration efficiency of this set may be striking but this is simply due to the way we created the set. The
set was created with just one hidden element in each disjoint primary set and up to 30 violational elements in
each disjoint primary set; the set is therefore composed overwhelmingly of violational elements and as such
exploits little encapsulation: hence the low configuration efficiency.

More relevant to our experiment and perhaps more surprising is the result that in our sample set the
configuration efficiency is independent of violational distribution standard deviation; in other words, the
potential coupling of the set is unchanged by moving all the possible violational elements into one disjoint
primary set.

Why is this result so different from the first experiment with information-hidden elements?
The answer lies in the third equation.

Let us again break the equation into its component parts; we see it is just the simple difference
between two terms (ignoring the common scaling m factor) :

@ |h(K,)—|n(K,)

This is much easier to interpret than equation four. Component (i) is just the difference between the
number of hidden elements of the target and source disjoint primary sets.

In our experiment all the disjoint primary sets have the same number of hidden elements, thus the
difference between the number of hidden elements in any two disjoint primary sets is zero. So it doesn't
matter how many violational elements are moved between disjoint primary sets: these translations cannot
change the potential coupling and cannot change the configuration efficiency of the set. This explains the
unchanging configuration efficiency of figure 3.

4.2.3. Non-uniformity

In both experiments performed so far, one set of elements was uniformly distributed: in the first
experiment, each disjoint primary set had just one violational element whereas the hidden elements were
non-uniformly distributed; in the second experiment, each disjoint primary set had one hidden element
whereas the violational elements were non-uniformly distributed. To model more, "Real world," problems,
we must examine sets whose hidden elements and violational elements are both non-uniformly distributed.



Let us re-visit the first experiment and look at the translation of hidden elements in a set again of 100
disjoint primary sets with each disjoint primary set having a random number - between 0 and 30 - of hidden
elements and a random number - between 1 and 30 - of violational elements. Before we do so, however, we
shall attempt to predict the results by examining the translation transformation equation for hidden elements,
the fourth equation in box 1.

As we noted before, the dominant component of translation transformation equation for hidden
elements is simply the total number of elements in the target minus the total number of elements in the
source. As we are choosing at random the target disjoint primary set into which all the hidden elements will
be moved, then this disjoint primary set will initially have between 0 and 60 elements in total (there will be at
most 30 hidden and at most 30 violational elements).

It is therefore conceivable that the first source disjoint primary set chosen for a translation will have
more elements than our target disjoint primary set, and so the total number of elements in the target disjoint
primary set minus the total number of elements in the source disjoint primary set will be negative; this
negative change in potential coupling implies that the configuration efficiency of the set would initially rise.

As more translations are performed, however, we should quickly reach a situation, in a randomly
distributed set, where the number of hidden elements in the target disjoint primary set becomes greater than
the number of elements in any other single disjoint primary set; this will certainly be the case when the target
disjoint primary set contains 61 elements and will probably be the case much sooner. After this point, all the
hidden element translations will increase the potential coupling and increase the standard deviation of the
hidden element distribution. This will yield a picture very similar to that already shown in figure 1: the
configuration efficiency will fall as the hidden element distribution standard deviation increases. The results
are shown in figure 4.
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Figure 4: Isoledensal configuration efficiency as a function of increasing standard deviation of the hidden
element distribution for a set with non-uniformly distributed hidden and violational elements.

There are three aspects of figure 4 that require explanation but only two are relevant to our
experiment.

Compared with figure 1, the initial configuration efficiency of the set in figure 4 is rather low, but
this is due to the set's now containing multiple hidden and multiple violational elements randomly
distributed: any such set with a non-trivial number of disjoint primary sets will usually have a configuration
efficiency of around 0.5. (Recall that the set in figure 1 had only one violational element per disjoint primary
set: it was extremely well encapsulated and hence its configuration efficiency was much higher than our
latest set.)

The second and most interesting aspect of figure 4 is that, as suspected, the configuration efficiency
of a set of non-uniformly distributed hidden and violational elements falls with increasing hidden element
distribution standard deviation, just as was the case with the non-uniformly distributed hidden elements and
uniformly distributed violational elements of the first experiment.

There only remains to be explained why the terminal configuration efficiency of the set in figure 4 is
not as low as that in figure 1. The explanation comes again from the fourth equation. The largest change of
potential coupling occurs when the difference in total number of elements between the source and target
disjoint primary sets is maximised. In our first experiment, all the disjoint primary sets contained only one
violational element but in this latest experiment there were always a random number of violational elements
left behind when the hidden elements were extracted, thus the differences in total number of elements
between target and source disjoint primary sets were not as great as those in the first experiment which in
turn causes the potential coupling to rise by a lesser amount than in the first experiment. This directly
translates to the configuration efficiency's not falling as far in our latest experiment.

As before, merely to demonstrate the trend, figure 5 shows ten randomly generated sets, each
constrained as was the set in figure 4, subjected to repeated hidden translation transformations.
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Figure 5: Isoledensal configuration efficiency as a function of increasing standard deviation of the hidden
element distribution for a set with non-uniformly distributed hidden and violational elements, multiple sets.

Let us also re-visit the second experiment and look at the translation of violational elements in a set
again of 100 disjoint primary sets with each disjoint primary set having a random number - between 0 and 30
- of hidden elements and a random number - between 1 and 30 - of violational elements. Before we do so,
however, we shall attempt to predict the results by examining the translation transformation equation for
violational elements, the third equation in box 1.

As we saw, the equation showed us that the change in potential coupling generated by the translation
depends only on the difference between the numbers of hidden elements in the target and source disjoint
primary sets. In our previous violation translation experiment, that difference was zero, and so moving all the
violational elements to one target disjoint primary set had no effect on the set's potential coupling or
configuration efficiency.

In our randomly generated set, however, the difference will usually be non-zero and so there will
usually be a change of potential coupling It will not, however, resemble the potential coupling change caused
by hidden element translations. In hidden element translations, the change in potential coupling was
proportional to the difference of the number of elements in the target and source elements, and this change
grew increasingly large as the target element grew increasingly large. The very act of translating a hidden
element to the target disjoint primary set increased the change in potential coupling caused by translating all
subsequent hidden elements to the target disjoint primary set.

The third equation exhibits very different behaviour. The change in potential coupling is proportional
to the difference in the number of hidden elements only and moving violational elements does not change the
number of hidden elements in source or target disjoint primary set. Thus repeated violational element
translations will not generate potential coupling changes proportional to the increasing size of the target
disjoint primary set: the change in potential coupling is fixed by the choice of source and target disjoint
primary sets.

Also, suppose the target disjoint primary set has 15 hidden elements; then translating violational
elements from a source disjoint primary set with fewer than 15 hidden elements will cause an increase of
potential coupling and translating violational elements from a source disjoint primary set with more than 15
elements will cause a decrease of potential coupling So unlike the hidden element translations, which after an
initial time were guaranteed to only increase potential coupling, violational element translations can lead to
small increases of potential coupling which can then be offset by subsequent small decreases of potential
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coupling'

In other words, although the increasing violational distribution standard deviation will usually change
the configuration efficiency, we do not expect configuration efficiency to change by anything like as much as
was caused by the hidden element translations: the configuration efficiency should be quite insensitive to
increasing violational distribution standard deviation.

The results of repeated violational element translations of a set non-uniformly distributed in both
hidden and violational elements is shown in figure 6.
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Figure 6: Isoledensal configuration efficiency as a function of increasing standard deviation of the
violational element distribution for a set with non-uniformly distributed hidden and violational elements.

As figure 6 indeed shows, configuration efficiency does change with increasing violational
distribution standard deviation, but only negligibly. Figure 7 shows the results for multiple randomly-
generated sets.
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Figure 7: Isoledensal configuration efficiency as a function of increasing standard deviation of the

1 This justifies the notion of the interface repository in computer programming, a subsystem holding only public
interfaces that act as facades to various other subsystems of hidden implementations.
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violational element distribution for a set with non-uniformly distributed hidden and violational elements,
multiple sets.

4.3.The fifth equation

The fifth equation in box 1 is the conversion transformation equation, which gives the change of
potential coupling when m information-hidden elements are converted into violational elements. The
equation simply states that when a hidden element in a disjoint primary set is converted into a violational
element in that same disjoint primary set, then the potential coupling must rise. This just confirms our
expectation that increasing the access to an element within a disjoint primary set must raise the potential
coupling of a set. The reverse is also true: the change of potential coupling in converting a violational
element to a hidden element can be calculated by changing the sign of the m, which then shows that such a
conversion must reduce the potential coupling of a set.

5. Conclusions

Systems evolve. To control this evolution means be able to deterministically predict the affects of
changes before those changes occur. For systems that can be modelled by sets, this primarily means
predicting the potential coupling of the set before the changes occur. This paper proposed that the evolution
of a set may be modelled as an arbitrarily complex series of transformations that may be applied to that set.

The two fundamental transformations were then established that describe all changes to a set and the
two potential coupling equations corresponding to those transformations were proposed. Three further
equations were derived from these fundamental equations to describe the more common changes that sets
undergo.

6. Related work

7. Appendix A

7.1. Definitions
Note that in these definitions the — symbol means, "Maps to."

[D3.1] Given primary set Q with disjoint primary set K in set G as defined in [D1.1] - [D1.5] of [1]
and the transformation 7, the change of internal potential coupling |A sm(Q)‘ effected by applying T to Q
is given by equation:

|A sin(Q)‘:

The change of internal potential coupling

Sm(T(Q))‘_ sin(Q)|
A sin(G)‘ effected by applying 7T to G is given by

equation:
|A sin(G)|: Sin(T(G))|_ Sin(G)‘

[D3.2] Given primary set Q with disjoint primary set K in set G as defined in [D1.1] - [D1.5] of [1]
and the transformation 7, the change of external potential coupling ‘A seX(Q)‘ effected by applying 7'to Q

is given by equation:

As.(0)=

The change of external potential coupling

S (T (Q))| =5 (Q)]
A SEX(G)‘ effected by applying T to G is given by
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equation:
A 5 (G)|=s., (T (G))]= |5, (G)
[D3.3] Given primary set Q with disjoint primary set K in set G as defined in [D1.1] - [D1.5] of [1]

and the transformation 7, the change of potential coupling ‘A s (Q)‘ effected by applying 7' to Q is given
by equation:

A s(Q)l=s(T ()] -Is(Q)|
The change of potential coupling |A s(G )‘ effected by applying T to G is given by equation:
4 5(G)=[s(T(G))~Is(G)
[D3.4] Given the set G as defined in [D1.1] - [D1.5] of /1] with an i" disjoint primary set K; of
|K i| elements and external information-hiding violation of v(K;), let 7, be the violational transformation
which maps K; onto K;" where K;" differs from K; by m violational elements where m >— ‘K i‘ or:
T,(K.,m)=(K.€G:|v(K,)|=|v(K,)|+m]

Where T, is applied to just the x”
T,(x,G,m)=(G—T,(G):|v(K )= (K )+rmVi=x;

And:

disjoint primary set K, of G, the transformation becomes:

V(K )|~ (K)|Vi#x]

T (x,G,m)={G—=T,(G):V—=T,(V)|
Note that as m may be positive or negative, K;” may have more or fewer violational elements than K.

[D3.5] Given the set G as defined in [D1.1] - [D1.5] of /1] with an i” disjoint primary set K; of
|K i| elements and external information-hiding violation of v(K;), let T; be the hidden transformation

and

which maps K; onto K, where K;" differs from K; by m information-hidden elements where m = —|K ;
where the violational elements remain unchanged, that is:
T.(K; m)=(K.€G:|K|-|K|+m;

V<Ki)‘_"V<Ki)U
Where T is applied to just the x" disjoint primary set K, of G, the transformation becomes:

T.(x,G,m)={G—T (G):|K|=|K[+mVi=x;|K[-|K[Vizx;|v(K)—=|v(K,)|Vi]

Note that as m may be positive or negative, K;" may have more or fewer information-hidden elements
than K.

[D3.6] The information-hiding function of set G as defined in [D1.1] - [D1.5] of /1], written A(G), is
the function that maps the information-hidden elements of that set to their own set. The information-hiding
of set G is the cardinality of its information-hiding function, ‘h(G)| . The information-hiding of disjoint
primary set K is the cardinality of its information-hiding function, |h(K )‘ . The information-hiding of G
divided by the number of disjoint primary sets is called the specific information-hiding of G. Given that a set
consists entirely of information-hidden and violational elements, then by definition:

() |G|=[r(G)+|p(G)
Gi) |K|=|n(K)|+|p(K)

7.2. Propositions
The propositions are organised as follows.

Propositions 3.1 - 3.5 establish some general results concerning the sum of changes of potential
coupling and the application of transformations to sets.
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Propositions 3.6 - 3.11 establish the fundamental transformation equation for the application of the
violational transformation to a set.

Propositions 3.12 - 3.17 establish the fundamental transformation equation for the application of the
hidden transformation to a set.

Propositions 3.18 - 3.20 establish the three derived transformation equations for the translation and
conversion transformations.

All propositions relate to sets of absolute information-hiding only.

Proposition 3.1.

Given disjoint primary set G and the transformation 7, the change of potential coupling |s (G)|
effected by applying 7 to G is given by:

A 5(G)|=|As,,(G)[+|As,, (G)
Proof:
By proposition 1.3.17 in [1]:
[s(G)|=

sin(G)|+

s.(G) @
Let K = T(K). Therefore:

ls(G")=ls,, (G| +]s, (GT)] i)

in

Also be definition:
As(G)=Is(T(G))|~Is(G) i)
Substituting (i) and (ii) into (iii) gives:

A 5(G)=ls(G) s
5 (G5, (G )5 (G)
5(G)| =[5, (G5, (G)

= |As,(G)+]As,(G)

—|s(G)|

*

(G)
(G)

SCX
Sex

1
X

se

QED

Proposition 3.2.

Given the disjoint primary set K and the violational transformation 7, defined in [D3.4], then the
number of elements in 7,(K) differs from the number of elements in K by m, or:

|Th(K,m)|:\K\+m
Proof:

Let K contain a information-hidden elements and |v(K)| violational elements. Thus, by
definition:

|K‘=a+|v(K)| (i)

Let K'=T,(K,m). By definition 7, leaves the number of information-hidden elements unchanged,
therefore:

K'|=a+pv(K)| i)
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Also by definition of 7}:

(K= (K)|+m (i)
Substituting (iii) into (ii) gives:

K'l=a+p(K)+m (v
Substituting (i) into (iv) gives:

T, (K ,m)| =K |=|K]+m

QED

Proposition 3.3.

Given the set G as defined in [D1.1] - [D1.5] of /1] with an i” disjoint primary set K; and given that a

particular x" disjoint primary set K, only is subject to the violational transformation 7, defined in [D3.4], the
number of violational elements in 7,(G) is given by:

Proof:

|v(Th(x,G,m))‘=|V‘+m

By proposition 1.3.6 in [1]:

NS

r

= > kv (K @
i=1#x
Let G'=T,(x,G,m) and let K;'=T,(K,m). By definition:
Vi]=2 v (k)
i1
= 2 k) db

By the definition of 7:
Vizx:|v(K)|=p(K,)| i)

Substituting (iii) into (ii) gives:

= Z V(K )+Hv(K)| @)

i=1#x

V*
Also by the definition of 7}:
Vi=x."v(K)‘—>|v(Ki)|+m v)

Substituting (v) into (iv) gives:

V=D (K +p (K )|+m (i)

i=1#x

Substituting (i) into (vi) gives:
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‘V(Th(x,G,m))|=|V*‘=‘V\+m
QED

Proposition 3.4.

Given the disjoint primary set K and the hidden element transformation 7., defined in [D3.5], then the
number of elements in 7,(K) differs from the number of elements in K by m, or:

T.(K, m)|=|K|+m
Proof:
Let K contain a information-hidden elements and |v (K )‘ violational elements. Thus, by
definition:
K|=a+pv(K) @
Let K'=T,(K,m). By definition T leaves the number of violational elements unchanged, therefore:
K=a"+v(K)| i)
Also by definition of 7:
a=a+m (i)
Substituting (iii) into (ii) gives:
K|=a+m+pv(K) v
Substituting (i) into (iv) gives:
T (K, m)|=|K|=|K]|+m
QED

Proposition 3.5.

Given the set G as defined in [D1.1] - [D1.5] of /1] with an i" disjoint primary set K; and given that a
particular x” disjoint primary set K, only is subject to the hidden element transformation 7, defined in [D3.5],

the number of violational elements in 7,(G) is given by:

|v(TZ(x,G,m))‘=|V‘

Proof:
Let G'=T.(x,G,m) and let K;"=T,(K,m). By definition:

=Z v(K))

v’ (i)

By the definition of 7
Vi:v(K)|=p(K)| i)
Substituting (ii) into (i) gives:
(T (x.G.m)|=2[v(K,)|=IV]
i=1

QED
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Proposition 3.6.

Given the set G as defined in [D1.1] - [D1.5] of /7] with an i” primary set Q;and an i" disjoint
primary set K; of ‘K i| elements and internal potential coupling s;,(Q;), the change of internal potential

coupling ‘A 5,,(Q,)] when the number of violational elements in K; changes by m where m=> —|K 418
given by:

A s, (Q)|=2m|K [+ m’—m
Proof:

Let 7, be the violational transformation defined in [D3.4] and let K;'=T,(K;,m). By definition [D3.1],
the change of internal potential coupling effected by applying 7, to Q; is:

Y

45, Q)| =I5 (@) —]s:n(Q)] @)
By proposition 1.2:
sa (@) =lK|(K=1) b
By proposition 3.2:
K|=|K [+m i)
Substituting (iii) into (ii) gives:
$ul Q)|=(K [+-m) (K [+ m~1)

- |Ki2

+m‘Ki|—|Ki|+m‘Ki|+m2—m

= |K|[(K|-1D)+2m|K |[+m°—m  (iv)
K| (K] K]

But:

5in(K)) :‘Ki|(|Ki|_1) (v)

Substituting (v) into (iv) gives:

Sl K| =]si (K| +2m K |+ m” = m
sin(K;k)|— s (K}) :2m|Ki‘+m2—m
And therefore by (i):
A s, (K )|=2m|K |+ m’—m
QED
Proposition 3.7.

*th

Given the set G as defined in [D1.1] - [D1.5] of /1] with an i primary set Q;and an " disjoint
primary set K; of internal potential coupling s;,(Q;), the change of internal potential coupling of the entire set
|A Sin(G)| when the number of violational elements in a particular x” disjoint primary set K, changes by

m where m=— ‘K X| is equal to the change of internal potential coupling of K,, or:

|A sin<G)|:|Asin<Qx)

Proof:

By proposition 1.3.11 of [1], the internal potential coupling of G is the sum of the internal potential
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coupling of all its disjoint primary sets:

56X i)
= Z sul@)tlu(Q)  ®

i=1#x

Let 7, be the violational transformation defined in [D3.4] and let K;"=T,(K;,m). Furthermore, let T,
apply to the x" disjoint primary set only such that K,"=T,(K,,m) and G'=T,(x,G,m). By definition:

i=1

su(Q7)|+|sw (D) b

i=1#x

By definition [D3.3], the change of internal potential coupling of G effected by applying
transformation 7, to G is given by:

A 5., (G| =[5, (G )= s, (G)| i)
Substituting (i) and (ii) into (iii) gives:
|A Sin(G)|: z sin (Q:)|+ sin(Qi) - Z sin(Qi)|_ sin(Qx) (IV)
i=l#x i=1l#x

But as 7, is only applied to K, then all disjoint primary sets except K, are unchanged, or:

K=K,Vi#x
And therefore:
sin(Kj):sin(Ki)|Vi¢x (V)
Substituting (v) into (iv) gives:
|A sin<G)|: Z sin(Qi)|+ sin(Q::) - Z sin(Qi) - Sin(Qx)
i=1#x i=1#x
= Jsu(K I =[su(K)] o)
By definition [D3.1], the change of internal potential coupling effected by applying 7, to K, is then:
‘Asin(Kx):Sin(Qi)_sin(Qx) (Vll)

Substituting (vii) into (vi) gives:

|A sm(G)|:|Asin(Qx)

QED

Proposition 3.8.

Given the set G as defined in [D1.1] - [D1.5] of /7] with an i” primary set Q;and an i" disjoint
primary set K; of ‘K i| elements and external potential coupling

Sex(Qi)| , the change of external
potential coupling ‘A 5. (O ,)| when the number of violational elements in K; changes by m where
m Z—‘Ki‘ is given by:
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|A Sex(Qi)

=m\V\—m|v(Ki)|
Proof:
Let 7, be the violational transformation defined in [D3.4]; let K;'=T,(K,m) and let G'=T,(G,m).

By definition [D3.2], the change of external potential coupling effected by applying 7, to K; is then:
45, (Q)|=]s (@]~ s (@) @

By proposition 1.4 in [1]:

so O =K (V=P (k) a

By proposition 3.3:
Vi]=v|+m D
Substituting (iii) into (ii) gives:

sol Q=K (V]+m=|v (@) v

By proposition 3.2:
K

:|Ki

+tm )

Substituting (v) into Gv) gives:

5 07)=
= |K;+m| (‘V|+m—|v(Ki)

Ki+m|(‘V‘+m—(|v(Ki)|+m))
—m)

)
VI=IK ||y (K )|+ m|V|-m]v(K,)

= |[K+m|(|V|-|v(K))

K|
= |K,|(|V‘_|V(Kz)|)+m|V‘_m|V(K,)| (vi)

But:
sl QIFIK|(VI=v(K)) (i)
Substituting (vii) into (vi) gives:
5ex(Q7)| =[5 (@) +m |V |=m|v(K,)
56l 0)) |5 (@) =m |V |-mv(K )
And therefore by (i):
A s, (Q)=m|V|=m|v(K )|

QED

Proposition 3.9.

Given the set G as defined in [D1.1] - [D1.5] of /1] of n elements with an i primary set Q,and an i"

disjoint primary set K; of K i| elements and external potential coupling |s_,(Q i) , the change of
external potential coupling of the entire set |A s, ( G)‘ when the number of violational elements in a
particular x" disjoint primary set K, changes by m where m>=—|K | is given by:

|A seX(G)|=mn—m|Kx‘+ ‘A 5..(0))
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Proof:

By proposition 1.3.12 of [1], the external potential coupling of G is the sum of the external potential
coupling of all its disjoint primary sets:

Sex(G)‘:Z s,.(0))
- Z Su (0 +s(0,) @

Let 7, be the violational transformation defined in [D3.4] and let K;"=T,(K;,m). Furthermore, let T,
apply to the x" disjoint primary set only such that K,"=T,(K,,m) and G'=T,(x,G,m). By definition:

5.(G)=2]s..(0))
i=1
= 2 sal@)]+]s(0))] b
i=1#x
By definition [D3.2]:
45 (G)=]s (G| ~[s (G) i)

Substituting (i) and (ii) into (iii) gives:

r

[Asu(G)= 2 [sal@l+ seX(QD—i_%X salQ)-lse (@] v
By definition [D3.2]:
A s (o (Q)-]s (0] ™
Substituting (v) into (iv) gives:
(6)= 2 @k X el bsael o
By proposition 1.4 in [1]:
s Q=K (V= (K ) (vid)

If we consider K; where i#x then as 7, is applied only to K, then:

K|=|K|Vi#x (viii)
Substituting (viii) into (vii) gives:

s (07 =K

Vi-p(k,)  x
By proposition 3.3:
Vi=V+m ®

Substituting (x) into (ix) gives:

5(Q))
K|V |K |y (K )|+ m
V|_|V (Kz)

:|Ki

(|V|+m_‘V(Ki)‘)
K|

K|

J+mlK|  (xi)
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But:

sex(Qi>|:‘Ki|(|V‘_|v(Ki)|) (xii)

Substituting (x1) into (xii) gives:

5o Q)| =5 (@) +m K |

As this holds W i#x we can take the sum over all primary sets except x:

Sex(Qi) Sex<Qi) + Z m|Kt|

i=1#x i=1#x i=1#x

r r

= D |sa(@)+m Y |K| (i)

i=1#x i=1#x

By definition,

r

n:;‘KJ: Z |Ki|+|Kx

i=1#x

So:

r

=D K| i)

i=1#x

n—‘KX

Substituting (xiv) into (viii) gives:

*

2 I5a ()= 2[5 (Q)[+m(n—|K )
i=1#x i=1#x
Z 5. (0= Z 5. (0)) +mn—m‘Kx (XV)
i=1#x i=1#x
Substituting (xv) into (vi) gives:
|A Sex(G)|: Z sex(Qi)|+mn_m|Kx‘_ Z Sex(Qi) +‘A sex(Qx)
i=1#x i=1#x

= mn—m‘Kx|+|A 56(Q.)

QED

Proposition 3.10.

Given the set G as defined in [D1.1] - [D1.5] of /1] of n elements with an i disjoint primary set K; of
|K i| elements and external potential coupling s..(K;), the change of external potential coupling of the

entire set |A SCX<G)| when the number of violational elements in a particular x” disjoint primary set K,
changes by m where m=— ‘KX| is given by:

A s, (G)=mn—m|K

+m|V|-mv(K )

Proof:

Let T, be the violational transformation defined in [D3.4] and let it apply to the x” disjoint primary
set only. By proposition 3.8, the change of external potential coupling of K, by the application of 7, to K, is
given by:
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‘A sex(Qx)‘Zm\V\—m|v(Kx)| i)

By proposition 3.9, the change of external potential coupling of the entire set G by the application of
T, to K.is given by:

A s (G)[Fmn—m|K |+|As. (Q)] (i)
Substituting (ii) into (i) gives:
As, (G)=mn—m|K

+m|V|—m‘v(Kx)‘
OED

Proposition 3.11.

Given the set G as defined in [D1.1] - [D1.5] of /1] of n elements with an i disjoint primary set K; of
|K l.| elements, the change of potential coupling of the entire set |A s(G )| when the number of

th

violational elements in a particular x" disjoint primary set K, changes by m where m=— |K . 1is given by:

+m|V‘—m|v(Kx) +m'—m

|As(G)|=mn+m|Kx

Proof:

Let T, be the violational transformation defined in [D3.4] and let K;'=T,(K,,m). Furthermore, let T,
apply to the x" disjoint primary set only such that K,"=T,(K,,m) and G"=T,(x,G,m). From proposition 3.7,
when the number of violational elements in K, changes by m, the change of internal potential coupling of the
entire set is given by:

A s, (G)=]As.(0)] @

By proposition 3.6, when the number of violational elements in K, changes by m, the change of
internal potential coupling of K, is given by

|A Sin (Qx>
Substituting (ii) into (i) gives:
A s, (G)=2m|[K [+m’—m (i)

=2m|K |[+m’—m (i)

From proposition 3.10, when the number of violational elements in K, changes by m, the change of
external potential coupling is given by:

‘A seX(G)‘Zmn—m‘KX‘+m‘V|—m‘v(KX) @iv)

By proposition 3.1, the change of potential coupling of G is given by:
As(G)=|As, (G)+As, (G) )
Substituting (iif) and (iv) into (v) gives:
A s(G)‘Zmn—m|KX|+m|V|—m|v(Kx)‘+2m|KX‘+m2—m
= mn +m‘Kx‘+m|V‘—m|v(Kx)|+m2—m
OED

Proposition 3.12.

Given the set G as defined in [D1.1] - [D1.5] of /1] with an i” primary set Q;and an i" disjoint
primary set K; of ‘K i| elements and internal potential coupling s;,(K;), the change of internal potential
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when the number of information-hidden elements in K; changes by m where

coupling ‘A Sin(Q,-)
m Z—‘Ki‘ is given by:

A5, (0,)|=2m ‘Ki|+m2—m
Proof:

Let T, be the hidden transformation defined in [D3.5] and let K;'=T(K;,m). By definition [D3.1], the
change of internal potential coupling effected by applying 7T’ to K is:

‘A Sin (Qz) Sin (Q,)| ()

ES

5 (D)

By proposition 1.2 in [1]:

:‘K:_k

s..(QD)=|K (K] =1)  di
By proposition 3.4:

K|=|K [+m i)
Substituting (iii) into (ii) gives:
5 Q)| =(K [+m) (K |+m—1)

= |K+m|K|~|K|+m|K|+m*—m

= |k](K|-D+2m|K |[+m’—m  (v)
But:
sulQ)=[K[(K]-1) @
Substituting (v) into (iv) gives:
sin(Q;k)|= 5.(0)) +2m‘Kl. +m’—m
5(Q)|~Js:n(Q))|=2m |K |+ m*—m
And therefore by (i):
A sm(Ql.)|:2m‘Ki|+m2—m
QED
Proposition 3.13.

Given the set G as defined in [D1.1] - [D1.5] of [1] with an i* primary set Q;and an i" disjoint
s, (0 l)| , the change of internal potential coupling of the

primary set K; of internal potential coupling
entire set |A sin(G)| when the number of information-hidden elements in a particular x” disjoint primary
set K. changes by m where m=— ‘K X| is equal to the change of internal potential coupling of K, or:

|A sin(G)|=|Asin(Qx)

Proof:

By proposition 1.3.11 in [1], the internal potential coupling of G is the sum of the internal potential
coupling of all its disjoint primary sets:

r

Sin(G)‘:Z

i=1

Sin(Qi)|
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r

- 3

i=1#x

sn(Q)*Fbn(0,) O

Let 7, be the hidden transformation defined in [D3.5] and let K;"=T,(K;,m). Furthermore, let T, apply
to the x" disjoint primary set only such that K,'=T,(K,,m) and G'=T,(x,G,m). By definition:

i=1

Sin(Qj)

(i)

sin(Q;k)|+Sin(Qz)

i=1#x

By definition [D3.1], the change of internal potential coupling of G effected by applying
transformation 7 to G is:

Sin(G*)

‘A Sin(G)‘:

sa(G) (i)

Substituting (i) and (ii) into (iii) gives:

r

|Asin(G)|: Z sin(Q;)|+ Sin(Qi)_ Zr:

i=l#x i=l#x

@iv)

Sin(Qi)|_ Sin(Qx)

But as T, is only applied to K, then all disjoint primary sets except K, are unchanged, or:

K=K,V i#x
And therefore:
5l O)|=lsn(QIVi#x (v
Substituting (v) into (iv) gives:
[45,(G= 2 5@ Hsu (0= 20 [sin(Q)]~Isi(@)
i=l#x i=1#x
= (@) lsu(Q)] o
By definition [D3.1], the change of internal potential coupling effected by applying T, to K, is then:
145, (0, ) =I5 (@)= [si(Q,)]  (viD

Substituting (vii) into (vi) gives:

|A Sin(G)|:|Asin(Qx)

QED

Proposition 3.14.

Given the set G as defined in [D1.1] - [D1.5] of /1] with an i primary set Q;and an i” disjoint
primary set K; of ‘K i| elements and external potential coupling sex(Qi)| , the change of external
potential coupling ‘A 5. (O ,)| when the number of information-hidden elements in K; changes by m where

m 2—‘1(,.‘ is given by:

A 5 (Q)|=m|V[=m|v(K)|

Proof:
Let 7. be the hidden transformation defined in [D3.5]; let K;'=T.(K,,m) and let G'=T,(G,m).
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By definition [D3.2], the change of external potential coupling effected by applying 7 to X is then:

A 5, (0] =[5 ()= [s (@) ()

By proposition 1.4 in [1]:

sl Q=K (k) b
By proposition 3.5:

Vi=lvl i)

Substituting (iii) into (ii) gives:

sl Q=[N V1= (KD v
By definition of T:

(&= (k)]

Substituting (v) into (iv) gives:

sl @)=K] (V=P (K)o

By proposition 3.4:

K|=|K|+m  (vii)

Substituting (vii) into (vi) gives:

5 ( Q) =IK i m|([VI=[v (K )
= |[K||VI-|K||v(K)|+m|V|-m|v(K,)
= |[K|(VI-p (& )+m|V]-m|v(K)| (i)
But:
sl QKNI (KD Gix)
Substituting (ix) into (viii) gives:
5 Q) )=se(Q )|+ m|V]=m v (K))
5 Q1) = [sex(Q))|=mV]=m v (K )
And therefore by (i):
‘A s, (K)|=m|V|-m ‘V(Ki>|
QED
Proposition 3.15.

Given the set G as defined in [D1.1] - [D1.5] of [1] of n elements with an i primary set Q, and an "
disjoint primary set K; of K 1.| elements and external potential coupling |5, (Q,)| . the change of
external potential coupling of the entire set |A Sex(G>‘ when the number of information-hidden elements
in a particular x” disjoint primary set K, changes by m where m>=—|K | is given by:

A s, (G)|=|As,(0,)

Proof:
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By proposition 1.3.12 in [1], the external potential coupling of G is the sum of the external potential
coupling of all its disjoint primary sets:

sex<G>\=§ 5.(0)
= Z s Q) H]s (@) @

i=1#x

Let 7. be the hidden transformation defined in [D3.5] and let K;"=T,(K,,m). Furthermore, let T, apply
to the x” disjoint primary set only such that K,"=T(K,,m) and G"=T.(x,G,m). By definition:

5.(G =2 ]s.(Q])
i=1
= 2 a0 s (@) G
i=1#x
By definition [D3.2]:
45 (G)|=so (G =]s (G) i

Substituting (i) and (ii) into (iii) gives:

r

A5, (GlF 2 s (Q)F[s (@)= 2 [su(@=Iso (@] @)
i=1#x i=l#x
By definition [D3.2]:
A s (@)l (@) ]sa(Q)] @
Substituting (v) into (iv) gives:
5o(G)= 2 s (@)= 2 [sa(@)+|As,(0,)] oD

i=1#x i=1#x

By proposition 1.4:

*

Se(Q;)

If we consider K; where [#x then as 7, is applied only to K, then:

=K |(VI-]p(&;)) i)

K|=|K | Vizx (i)

Substituting (viii) into (vii) gives:

sl Q=K NIV (k) Gx
By proposition 3.5:
VI=vl @
Substituting (x) into (ix) gives:
s Q=K (V- (K ) i)
But by proposition 1.4 in [1]:
s Q=K |(VI=v(K)) i)

Substituting (xii) into (xi) gives:
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*

Sex(Q: )= ]5ex(Q)

As this holds W i#x we can take the sum over all primary sets except x:

r r

> fsw (@)= 2

i=1#x i=1#x

5@ (i)

Substituting (xiii) into (vi) gives:

s5o(G)|=[A 5, (Q,)

QED

Proposition 3.16.

Given the set G as defined in [D1.1] - [D1.5] of /1] of n elements with an i primary set Q; and an "
sex ( Qz)

external potential coupling of the entire set |A Sex(G)| when the number of information-hidden elements in

disjoint primary set K; of ‘K i| elements and external potential coupling , the change of

is given by:

a particular x” disjoint primary set K, changes by m where m>— |K i

A 5o (G)=m|V]=m|v(K )

Proof:

Let T, be the hidden transformation defined in [D3.5] and let K;'=T.(K,,m). Furthermore, let T, apply
to the x" disjoint primary set only such that K,"=T,(K,,m) and G'=T,(x,G,m). By proposition 3.14, the change
of external potential coupling of K, by the application of T, to K, is given by:

As,(0,) =m‘V‘—m|v(Kx) )

By proposition 3.15, the change of external potential coupling of the entire set G by the application of
T, to K, is the same as the change of external potential coupling of K, or:

se(G)|=[A s, (Q))] i)

Substituting (i) into (ii) gives:
A 5 (G)=m|V]-m|v(K )

QED

Proposition 3.17.

Given the set G as defined in [D1.1] - [D1.5] of /1] of n elements with an i primary set Q; and an "
disjoint primary set K; of ‘K i| elements, the change of potential coupling of the entire set |A s(G )|
when the number of information-hidden elements in a particular x"

where m Z—|KX

disjoint primary set K, changes by m

is given by:
A s(G)=m|V|-m v(K,)|+2m ‘Kx|+m2— m
Proof:

Let 7, be the hidden transformation defined in [D3.5] and let K;"=T.(K,,m). Furthermore, let T, apply
to the x" disjoint primary set only such that K,'=T,(K,,m) and G"=T,(x,G,m). From proposition 3.13, when the
number of information-hidden elements in K, changes by m, the change of internal potential coupling of the
entire set is given by:

A5, (G)=|As,(0)] @
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By proposition 3.12, when the number of information-hidden elements in K, changes by m, the
change of internal potential coupling of K, is given by

|A Sin (Qx)
Substituting (ii) into (i) gives:
As,(G)=2m|K,

=2m‘KX|+m2—m (ii)

+m’—m (i)

From proposition 3.16, when the number of information-hidden elements in K, changes by m, the
change of external potential coupling is given by:

A s (G)=m|V|=m|v(K )

@iv)
By proposition 3.1, the change of potential coupling of G is given by:
A5(G)=|As, (G)+As, (G
Substituting (iii) and (iv) into (v) gives:
As(G)=m|V|-m v(K,)+2m ‘Kx|+m2— m
QED

Proposition 3.18.

Given the set G as defined in [D1.1] - [D1.5] of /1] of n elements, the cumulative change of potential
coupling of the entire set |A swmulaﬁve(G)| when m violational elements are moved from a particular source
disjoint primary set K, to a different target disjoint primary set K, is given by:

‘A scumulative(G)|:m(|h(Kt)|_|h(Ks) )

Proof:

Let T, be the violational transformation defined in [D3.4] and let 7,; apply to the s disjoint primary
set K, only such that K;"=T,,(K,m) and G'=T,,(s,G,m). T,; will remove m violational elements from K.

Let T, be the violational transformation defined in [D3.4] and let 7, apply to the #” disjoint primary
set K, where t+#s only such that K,'=T,,(K,m) and G"=T,»(t,G",m). T,, will add m violational elements
from K,.

Let us define the violational translation transformation 77, as the combination of the two translations
T,; and T, such that:

TTp (G): TpZ(Tpl (G))

As these transformations are linear, the change of the potential coupling of Ty, is equal to the sum of
the changes of the potential coupling of the transformations 7, and 7,,, or:

A'S pumatane(G)=As (G +|AS (G @)

Considering elements removed from a disjoint primary set as negative, then 7,,, will add -m elements

to G. By proposition 3.11, the change of potential coupling in G caused by the removal of these m violational
elements from K; is given by:

A s(G)|=mn+m‘Ks‘+m|V|—m|v(KS)‘—i-mz—m (ii)

cumulative

Substituting -m for m in (ii) gives:
A s(G)|=—mn—m ‘KS|—m|V|+m v(K,)[+ m'+m (i)

By proposition 3.11 again, the change of potential coupling in G* caused by the addition of m
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violational elements to K; is given by:
A s(G)|=mn"+m ‘Kt|+m |V*|—m|v(K,)|+m2—m @(iv)

G has m fewer elements than G and they are all information-hiding violational, and thus both v(G”)
and n" are changed in comparison with G, such that:

Vi=vl-m  ®
n=n-m (Vi)
Substituting (v) and (vi) into (iv) gives:
|AS(G*)‘Zm(n—m)+m‘Kt|+m(‘V‘—m)—m‘v(Kt)‘erz—m
= mn—m2+m‘Kt‘+m‘V|—m2—m‘v(K,)|+m2—m
= mn+m|Kt‘+m|V|—m‘v(Kl)‘—m2—m (vii)
Substituting (iii) and (vii) into (i) gives:
IAS stasive (G| —mn—m|K | —m |V‘+m|v(KS)
—|—mn+m‘Kt|+m|V|—m|v(K,)|—m2—m

—[v(K,))) (viii)

+m2—|—m

= m(‘K,‘—‘V(Kz)‘_qKS

By definition [D3.6]:
[K|=[n (K[ + v (K)]
K=l (K)|=[r (K] @x)
Substituting (ix) into (viii) gives:

‘A scumulative(G)|:m(|h(Kt)|_|h(Ks) )

QED

Proposition 3.19.

Given the set G as defined in [D1.1] - [D1.5] of /1], the cumulative change of potential coupling of
the entire set |A smmulmive(G)‘ when m information-hidden elements are moved from a particular source
disjoint primary set K, to a different target disjoint primary set K is given by:

‘A Scumulative(G)|:m( 2‘K1|_ 2|KS‘+‘V(KA)‘—|V(K,)|+2HI)
Proof:

Let T, be the hidden transformation defined in [D3.5] and let T.; apply to the s” disjoint primary set
K, only such that K,'=T.,(K,,m) and G"=T,,(s,G,m). T.; will remove m information-hidden elements from K.

Let T., be the hidden transformation defined in [D3.5] and let T, apply to the " ¢#s disjoint
primary set K, only such that K,"=T.,(K,m) and G*'=T.,(t,G",m). T., will add m information-hidden elements
from K..

Let us define the hidden translation transformation 7’y as the combination of the two translations 7,
and T, such that:

TT (G): Tz2(Tz1 (G))

As these transformations are linear, the change of the potential coupling of 77 is equal to the sum of
the changes of the potential coupling of the transformations 7>, and 7, or:
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A S i GFAs (G HAS (G @)

cumulative

Considering elements removed from a disjoint primary set as negative, then 7., will add -m elements
to G. By proposition 3.17, the change of potential coupling in G caused by the removal of these m
information-hidden elements from K; is given by:

A s(G)|=m|V‘—m|v(KS)‘+2m |KS‘+m2—m (ii)
Substituting -m for m in (ii) gives:
A s(G)‘=—m|V‘+m|v(Ks)|—2m |K‘v|+m2+m (iii)

By proposition 3.17 again, the change of potential coupling in G caused by the addition of m
information-hidden elements to K, is given by:

A S(G)

=m ‘V*|—m|v(Kl)|+2m‘Kt‘+ m —m  (iv)

G has m fewer elements than G but they are all information-hidden, and thus v(G") is unchanged, or:
vi=wl

Substituting (v) into (iv) gives:

|A s(G*)|=m ‘V|—m‘v(Kt)‘+2m‘Kt‘+m2—m (vi)

Substituting (iii) and (vi) into (i) gives:
‘A Scumulative<G)|:_m|V|+m ‘V(KS)‘—2m|KS‘+m2+m
+m|V|—m|v(Kt)‘+2m|K,‘+m2—m

= m(2|K |-2|K,

+‘v(Ks)‘—‘v(K,)‘+2m)
QED

Proposition 3.20.

Given the set G as defined in [D1.1] - [D1.5] of [1] of n elements, the cumulative change of potential
coupling of the entire set |A scumulam,e(Gﬂ when m information-hidden elements in a particular disjoint
primary set K, are converted to violational elements within the same disjoint primary set is given by:

‘A Scumulan‘ve(G)‘: m(n _|Kx )

Proof:

Let T, be the hidden transformation defined in [D3.5] and let 7, apply to the x" disjoint primary set
K, only such that K,"=T(K,,m) and G'=T,(x,G,m). T, will remove m information-hidden elements from K.

Let T, be the violational transformation defined in [D3.4] and let 7, apply to the x” disjoint primary
set K, only such that K,"=T,(K,m) and G"'=T,(x,G",m). T, will add m violational elements from K.

Let us define the conversion transformation 7¢ as the combination of the two translations 7. and 7,
such that:

TC (G): Tp(Tz (G))

As these transformations are linear, the change of the potential coupling of 7¢ is equal to the sum of
the changes of the potential coupling of the transformations 7, and T, or:
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A Scumulative(G)‘:‘As(G)|+‘A S(G*)| (1)

Considering elements removed from a disjoint primary set as negative, then 7., will add -m elements

to G. By proposition 3.17, the change of potential coupling in G caused by the removal of these m
information-hidden elements from K, is given by:

As(G)

=m|V|—m|v(Kx)‘+2m|Kx|+m2—m (ii)
Substituting -m for m in (ii) gives:
A s(G)|=—m|V|+m|v(Kx)‘—2m|Kx|+m2+m (iii)

By proposition 3.11, the change of potential coupling in G” caused by the addition of m violational
elements to K, is given by:

‘A s(G*)|=mn*+m ‘Ki

+m|V*|—m‘v(Kx)

+m’—m @iv)

K," has m fewer elements than K and they are all information-hidden, and thus both K,” and n" are
changed in comparison with G, but v(K,") and v(G") are unchanged such that:

v’
v(K?)

=v| ™
:|V(Kx)

(vi)
n=n—m (vii)

K|=|K |-m (i)

Substituting (v), (vi), (vii) and (viii) into (iv) gives:

|As G*|=m n—m)+m(|K +m’—m
(G )l=m(n—m)+m(|K

—m)+m‘V|—m‘v(Kx)

= mn—m’+ m‘Kx‘—m2+m‘V|—m‘v(Kx) +m’—m

= mn+m|Kx —m’—m (ix)

+m‘V|—m‘v(Kx)

Substituting (iii) and (ix) into (i) gives:

|A Scttmulati\re(G)‘:_m|V‘+m|v(Kx)|_2m|Kx‘+m2+m
+mn+m|K |+m|V|-mly(K )|—m’—m

)

= m(n—|K,

QED
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