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Abstract

This paper presents a format in which simple problems and exercises of encapsulation theory can be
framed to facilitate the calculating of potential coupling for simple sets.
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1. Introduction

This paper proposes no new terms, definitions or equations.
This paper, in fact, proposes nothing new of any significance whatsoever.

Instead, this paper proposes a loose format in which potential coupling [2] problems may be presented and
solved. There are two reasons for this.

Firstly, encapsulation theory was developed primarily as an analytical tool to aid in the design of computer
programs, yet the connection between the theory's equations and the programs themselves is often obscure.
The format tries to capture, in a simplified if slightly abstract sense, this connection in an attempt to show the
relevance of the equations at least to small programs. (Calculating the potential coupling of large programs
is, however, a task for machines.)

Secondly, the next paper [4] in this series to be written requires some rather subtle manipulation to the
distribution of elements within disjoint primary sets, and these manipulations are best demonstrated through
example. A means of providing a consistent framework in which such examples could be presented was
considered, therefore, a prerequisite.

This paper considers sets of absolute information-hiding only.

2. Format

To begin with an example, we consider a set G consisting of a single disjoint primary set K; (the associated
primary set Q, is understood) in which reside five violational elements and three information-hidden
elements. This may be graphically shown as in figure 1, where the information-hiding violational elements
are coloured black and the information-hidden elements are coloured white.
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Figure 1: A disjoint primary set with 8 elements, 5 violational and 3 information-hidden.

Let us, purely for convenience, re-arrange the contained elements of figure 1 so that the violational
elements are, "On top," of the information-hidden elements, see figure 2.
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Figure 2: A disjoint primary set with 8 elements, 5 violational on top and 3 information-hidden on the
bottom.

To make figure 2 more descriptive, let us clearly state three more parameters of G that will be useful in the
upcoming calculations, namely the number of elements 7, the number of disjoint primary sets r and the
specific violational density of the set, d (recall that the specific violation density is the number of violational
elements in the set divided by the number of disjoint primary sets). See figure 3.
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Figure 3: A disjoint primary set with 8 elements, 5 violational and 3 information-hidden, with key
parameters listed.

Now let us take an abstraction of figure 3, showing the disjoint primary set as merely two vertical lines
whose name, K;, appears outside the lines, to the upper right. Within the lines, instead of showing a graphical
representation of the elements, we shall show only the numbers of elements contained in the disjoint primary
set; the number of violational elements shall be shown, "On top," above the number of information-hidden
elements, see (A.i).
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In (A.1) we thus have the number 5 - the number of violational elements in the disjoint primary set - above
the number 3 - the number of information-hidden elements in the disjoint primary set. We see that the name
of the set, G, does not appear in the format and is simply understood.

n=8, r=1,d=5 (Ai)

Let us take a second example, see (A.ii).
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Example (A.ii) shows us a set of two disjoint primary sets, K; and K. K; has /0 violational elements and 7
hidden elements. K, has [ violational element and 5 hidden elements. Outside the regions, we see the number
of elements n is 23, the number of regions r is 2 and the specific violational density of the set d is 5.5.
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Let us take a third example, see (A.iii).
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Example (A.iii) shows us a set of three disjoint primary sets, K;, K, and K;. K; has 60 violational elements
and /7 hidden elements. K, and K; have / violational element and 0 hidden elements each. Outside the
regions, we see the number of elements 7 is 79, the number of regions r is 3 and the specific violational

n=79, r=3, =2 (Aiii)
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Recall that from [2] that the number of violational elements of a disjoint primary set K is the cardinality of
the information-hiding violation function, ‘v (K )‘ , and from [3] that the number of information-hidden
elements is the cardinality of the information-hiding function, |h(K )| . Thus the general form of the
format as given so far for a set of r disjoint primary sets is:
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The format is not complete, however, until we have established the connection between the sets represented
and their potential coupling. We shall proceed with task in the next section.
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3. Calculating the potential coupling

Let us again consider an example already presented, see (B.i).
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What is the potential coupling of this set?

Again from [2] we know that the potential coupling of a set is the sum of the potential couplings of all its
primary sets. So the question becomes: what is the potential coupling of the sets displayed here?

Let us consider the first disjoint primary set, K;. This has an associated primary set, Q;, but this is not
shown as the potential coupling is primarily a function of disjoint primary sets. The potential coupling of a
primary set is defined as the sum of its internal potential coupling and its external potential coupling.

The internal potential coupling of a primary set is the total number of elements in its disjoint primary set
multiplied by the total number of elements minus one in that disjoint primary set (see [2], proposition 1.2).
The total number of elements in K; is 17. Thus the internal potential coupling of K is 17 x 16.

The external potential coupling of a primary set is the number of elements in its disjoint primary set
multiplied by the number of violational elements in all other disjoint primary sets (see [2], proposition 1.4).
Thus the external potential coupling of Q; (associated with K;) is 17 x 1.

The potential coupling of Q;, written ‘s (0 1)‘ , is then the sum of these two terms: |s (Q1)| =17x16
+ 17x 1.

We can simplify this equation to read: ‘s (Q1)| = 17(16 + 1). This is the key form of the equation, which
will be presented under the sets in our format: the potential coupling of a primary set is the number of
elements in its disjoint primary multiplied by the number of elements minus one in that disjoint primary set
plus the sum of the violational elements in all other disjoint primary sets.

We shall add this equation to (B.i) and re-write it as:
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s(Q))| =17(16 + 1) = 289

n=23, r=2, d:% (B.ii)
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Now let us apply the same equation to K,. The potential coupling of K, is the number of elements in K, (6)
multiplied by the number of elements minus one in K, (5) plus the sum of the violational elements in all
other disjoint primary sets (10).

This gives us: s(K>) = 6(5 + 10). Let us add this to our format, also, see (B.iii).
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|s(Q))| =17(16 + 1) = 289
|s(Q,)] =6(5+10)=90



The potential coupling of the set is then just the sum of these terms: ‘s (G)‘ = 289 + 90. Adding this to
our set gives the next evolution of the format, see (B.iv).
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|s(Q,)] =6(5+10)=90
s(G) = 289+ 90 =379

As a slight aside, if we consider for a moment that the set in (B.iv) is a Java system of two packages with
10 public classes and 7 package-private classes in one package and / public class and 5 package-private
classes in the other, then the maximum possible number of source code dependencies between these 23

classes in this configuration would be 379.
For comparison, let us also take our other system in (A.iii) and re-write it here using the latest format, see

(B.v).
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The format is still not complete, however, because it only presents the potential coupling of the system. We
need finally to add the equations for the uniform potential coupling and the minimum isoledensal potential

coupling; in this way, the three key equations of encapsulation theory and the sample sets they describe can
be gathered together for examination.

4. The uniform potential coupling

Most sets are not uniformly distributed in violational and information-hidden elements, but it is often
interesting to calculate what would the potential coupling of a set be if it were so distributed. The equation
for this uniform potential coupling s,(G) is given by (see [2], proposition 1.8):

su(G)|=n(%—1+(r—1)d)

In our format developed so far, we clearly list the three variables n, r and d beside the set being described,
thus it is a simple matter to add this equation to our format to give us - if we take (B.iv) as an example - the
following:
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Of course, we note that if we uniformly distribute the information-hidden and violational elements of this
set then we will arrive at a set not with whole numbers but with rationals:

‘5.5 55
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No Java system, for example, can have 5.5 public classes in a package; this reflects the statistical nature of
the uniform potential coupling equation and reminds us, while that perfectly uniform distribution may not in
all cases be possible, the larger the set under observation, the closer the approximation of uniform
distribution is achievable.

To add our uniform potential coupling equation to our other example (B.v), we arrive at (C.ii).

‘601{1 1" n=79, r=3, d=22 (C.ii)
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5. The isoledensal potential coupling

As described in [2], the isoledensal transformation maps a set to the set with the lowest uniform potential
coupling conserving the total number of elements and the violation density of the original set. The equation
for this isoledensal potential coupling s...(G) is given by (see [2], proposition 1.14):

|5,(G)|=n(2Vnd—1-d)

Again, these variables are readily available, and with the presentation of this equation we come to the final
form of our format. If we take (C.i) above, then its final form is:
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And if we take (C.ii) from above we have:
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6. Transformation examples

In [3] equations were derived which described how the potential coupling of a set changes as elements are
added, removed and moved between disjoint primary sets. We shall examine some sample sets to confirm
that these equations indeed give the correct results.

First, consider the set of three disjoint primary sets as shown:
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|s(Q,) =12(11+3+9)=276
|s(Qy)] =2928+3+7)=1102
s(G) = 700 + 276 + 1102 = 2078
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Now, let us add 5 violational elements to K;. The equation which describes how the potential coupling of
our set will change due to these added elements is given by the first transformation equation (see [3],
proposition 3.11):

)=1952

A s(G)|=m(

-1

If we take m=5 and x=1 such that K,=K;, then this equation predicts that the potential coupling of (D.i)
will change by the following amount:

IAs(G)=5(61+20+19—3+5—1)=505

If we now actually perform the transformation and add the 5 violational elements to set (D.i), then we get:

—|v(K
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|s(0,) =12(11 +8+9)=336
|s(Q3)| =2928+8+7)=1247
Is(G)| = 1000 + 336 + 1247 = 2583
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And as we can see, if take the s(G) in (D.i) from that in (D.ii) we get: 2583 - 2078 = 505, as expected.

If we now keep our set (D.ii), let's perform a second transformation on it: consider moving /0 information-
hidden elements from K; to K>. The equation which describes how the potential coupling of our set will
change due to these translated elements is given by the fourth transformation equation (see [3], proposition
3.19):

m(2|K |=2[K |+ ]v (K,

|+2m)

cumulanve |

As we are moving elements from K; to K, then the source disjoint primary set K,=Kj;, and the target
disjoint primary set K=K,. With m=10, we then have:
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If we now actually perform the transformation and move the /0 information-hidden elements from Kj to
K, then we get:

K, K, K,
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|s(Q))| = 2524+ 7+9)=1000
|s(Q,)| =22(21+8+9) =836
|s(0y)| =19(18 +8+7) =627
Is(G)| = 1000 +836 + 627 = 2463
su(G)|:n(%—1+(r—1)d)=66(%—1+(2)%)=2442
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And as we can see, if take the ‘s (G)| in (D.ii) from that in (D.iii) we get: 2463 - 2583 = -120, as

expected.

7. Conclusions

There are no real conclusions to this paper as the paper proposed no new arguments and instead
only presented a loose format in which sample problems of encapsulation theory can be worked out
in the hope of clarifying the equations employed for interested students.
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