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Abstract

This paper introduces the concept of radial encapsulation, whereby dependencies are constrained to act
from subsets towards supersets. The paper shows how hierarchically encapsulated sets can be viewed as trees

and investigates how potential coupling changes as the branches of these trees are manipulated.
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1. Introduction

In [1] an encapsulation context was defined as a set of constraints on the formation of potential ordered
pairs within an encapsulated set. The absolute information-hiding context was introduced whereby a
violational element is accessible to all elements in all other disjoint primary sets. Arguably the simplest and
most widely-employed, this context is not, however, the only context imaginable. Others exist.

The key point of these other contexts is that they enable that which is forbidden by absolute information-
hiding: they allow violational elements which are accessible to some but not all of the elements in other
disjoint primary sets. Violational access becomes a relative - rather than an absolute - property: hence these
are the relative information-hiding contexts, or simply, "Relative contexts."

Relative contexts differ from one another only in the means they employ to manifest this relative element
access, and there is no limit to number of such manifestations. To take the computing environment, for
example, we can imagine that the program units of a system are named (as they usually are) and therefore we
could contemplate the constraint that dependencies between program units must flow alphabetically.
Program unit Arnold may depend on program unit Melissa; program unit Zebra may not depend on program
unit Brenda. Despite the crassness of this example, such an unusual dependency constraint nevertheless
establishes a relative context: violational elements accessible to some are not accessible to others (those
alphabetically, "Up-stream").

When faced with multiple relative contexts, one must usually choose between suitors; seldom do the
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constraints of one relative context overlap with those of another to the degree that both may reign
consistently over the same system. Occam's razor is invoked: all else being equal, the relative context
defined by the simplest, most economic constraints might be considered the best choice.

This paper introduces such a relative context, the radial encapsulation context, defined by a single

constraint: dependencies may only form from subsets to supersets.

2. Radial encapsulation

First, let us look at an absolute information-hiding context. Figure 1 shows two primary sets, a and b,
both containing two elements, one violational (the black element) and one hidden (the white element) - note
that the secondary sets V and H are not shown but understood. Also shown are the potential dependencies
from the elements in set a on those elements in set b, thus we see two dependencies on the violational

element in b.
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Figure 1: An absolute information-hiding context with two primary sets.

Recall that the absolute context is embodied in the definition of the external potential coupling set (see
definition [D1.9] in [1]):

5. (Q)=KX(V\K,) ()

This tells us that, in the absolute context, dependencies may form from the elements of any disjoint
primary set to the violational elements of every other disjoint primary set. In terms of software, this says that
all program units of any given subsystem may form dependencies on all the public program units of all other
subsystems in the system. Hence the two dependencies shown in figure 1 are perfectly legal.

How would this simple configuration look in a radial encapsulation context? The defining constraint of
radial encapsulation is also embedded in the definition of the external potential coupling set (see definition
[D8.1]):

5.(Q)=K:X(VNQ,) (i)

Despite the apparent similarity between equations (i) and (ii), these sets are very different. In (i), as
mentioned, dependencies may form towards every other disjoint primary set; in (ii), however, dependencies
may form on towards those disjoint primary sets that are not subsets of the primary set in question, Q.. To put

it another way, dependencies may only flow from subsets into supersets, or more formally that an ordered



pair (x€a,y €b) represents a legal dependency if and only if g cb . It thus appears that the two
dependencies portrayed in figure 1, though legal in the absolute context, would be illegal in the relative
context. The potential dependencies from b to a, also, would be illegal: b is not a subset of a nor is a a subset
of b; this would leave us with two sets which could not interact and a trivially degenerate system.

So how can we allow interaction between these two sets whilst respecting radial encapsulation? The

answer is to hierarchically construct the two sets, as shown in figure 2.
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Figure 2: Radial encapsulation with two primary sets.

In figure 2, set a is defined as a subset of set b. Now, the elements in a are free to form potential
dependencies on the violational elements in b without transgressing the constraint that dependencies can only
form from subset to superset. Of course, the elements in b may not, still, form potential dependencies
towards the elements in a, as those dependencies would form from superset into subset, but a degree of
interaction is now possible.

Encapsulation contexts whose dependency constraints are realised by the partial- or hierarchical-ordering
of sets are called hierarchical encapsulation contexts, a subcategory of the relative encapsulation contexts;
the radial encapsulation context is a yet further subcategory of the hierarchical encapsulation contexts. (The,
"Radial," term, incidentally, comes from the pattern made by the potential dependency arrows in figures such
as the one above: the arrows always radiate outwards, never inwards.)

Before we examine the properties of radially-encapsulated sets, and how they differ from those of,
"Normal," absolute information-hiding contexts, let us look at an alternative representation of the set in
figure 2. Purely for convenience, instead of drawing set a inside set b, we can depict a as being on top of b,

as shown in figure 3.



Figure 3: Radial encapsulation with a defined within b.
In figure 3, it is understood that drawing a on top of b implies that a is a subset of b, and b is a superset

of a. Viewed so, the radial encapsulation context allows only those dependencies that flow, "Downwards."

3. Radial branches

Figure 4a shows three sets radially encapsulated.

.
4

Figure 4a: Three radially-encapsulated sets.
The arrows of figure 4a now show the general direction in which potential dependencies form between
violational elements contained with each of the sets (not shown), though note that elements in @ may form
dependencies not just towards elements in the superset b, but towards elements in ¢ too, thus the arrows

represent a simplified view of the potential dependencies. The organisation of sets shown in figure 4a is



called a branch and the length of the branch is the number of its comprised sets.
Let us now populate the branch of figure 4a with elements and attempt to calculate its potential coupling,

see figure 4a.
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Figure 4b: Three radially-encapsulated sets populated with elements.

The internal potential coupling in the relative context is the same as that in the absolute context. The
potential couplings of the three sets are:

e Set c¢: The internal potential coupling is 5x4=20. This set has no external potential coupling, as there

is not set "below" it to which it can form dependencies. Thus the potential coupling of c is 20.

e Set b: The internal potential coupling of this set is 3x2=6. The external potential coupling is the
number of elements in this set multiplied by the number of all the violational elements (the black
elements) it can see in all other sets. As the only set on which this set can form dependencies on is
set ¢ and there are only two violational elements in ¢, then the external potential coupling is 3x2=6.
Thus the potential coupling of b is 6+6=12.

e Set a: The internal potential coupling of a is 3x2=6. The external potential coupling is the number of
elements in a multiplied by the number of violational elements in b and ¢, which is 2+2=4; so the
external potential coupling is 3x4=12.

Summing the potential couplings of all three sets, we find that the potential coupling of this branch is 44.
Noting that there are /] elements in this branch, we might also ask whether we could reduce the potential
coupling of this branch by changing the number of sets and re-distributing the elements. Does there exists a
specific number of sets per branch that minimises the potential coupling of that branch? This question is

answered in the next section.

4. Minimised branches

Consider a branch of /00 elements. Let us plot the potential coupling of this branch as the elements are

uniformly distributed over increasing numbers of disjoint primary sets (i.e., over an increasingly long



branch) subject to the constraint of a specific violation of one (i.e., there must be one and only one
violational element per disjoint primary set, d=1). Thus, the first branch will consist of a single set with a
potential coupling of 9900. Next, the 100 elements will be spread over a branch of two sets, giving a

potential coupling of 4950, and so on.
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Figure 5: Potential coupling of an increasingly long, branch (d=1).
From figure 5, we can see that that potential coupling of this branch of /00 elements is minimised when
the length of the branch is slightly less than twenty. It can be proved that the potential coupling of a

uniformly-distributed branch occurs when the number of disjoint primary sets in the branch is given by (see

2n
Tia= q

For n=100 and d=1, the number of disjoint primary sets is /4.

proposition 8.3):

A significant difference arises here between the absolute and the radial encapsulation contexts. Given
that all disjoint primary sets must contain at least one violational element, the minimum potential coupling of
any number of elements occurs when there is just one violational element per disjoint primary set; having
one violational element per disjoint primary set further implies that the set is uniformly distributed in
violational elements. Within the absolute encapsulation context, it was proved that a set uniformly
distributed in violational elements has a minimised potential coupling when it is also uniformly distributed in
hidden elements (see proposition 1.11 in [1]). This, however, is not the case in the radial encapsulation
context consisting of a single, branch: given a branch uniformly distributed in violational elements, it is
possible to reduce that branch's potential coupling by distributing its hidden elements non-uniformly.
Deriving the equation for the configuration which offers this minimum potential coupling is described in [3];

this paper will concern itself with uniformly-distributed configurations.



5. Radial trees

We have thus far considered only single branches. A set, of course, may have many immediate subsets,

thus forming multiple branches, or a tree, see figure 6.
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Figure 6: Multiple branches.

Figure 6 shows a tree of two branches sharing the same root set. The two branches are {a, b, ¢} and {c, d,
e}. The arrows in figure 6 again show the general direction of dependencies from elements within the sets to
elements in others sets, thus elements in a can depend on elements in both b and e.

We wish to calculate the potential coupling of such multi-branch sets. The inclusion-exclusion formula of
set theory describes how to calculate the total number of elements given a number of intersecting sets; a
similar equation applies to branches, too (branches being sets themselves), and given that the potential
coupling of a set is defined in terms of the number of its elements, then it can be shown that the potential

coupling of a tree of a branches is given by:

S(Q B) :é |S<Bi)

a—1
_z |S(BimBi+1)‘
i=1

This gives us the means to investigate how multiple branches affect overall potential coupling and raises
two, general questions concerning a set of multiple branches.

The first question is: how does the potential coupling of a single branch change as it is split into two
branches where the split occurs at ever lower sets?

Let us take 500 elements evenly distributed over a branch of /0 disjoint primary sets, where we shall
number the root set as / and the leaf set as /0; throughout these experiments, we shall keep the specific
violation of 1, d=1. We shall then record its potential coupling. We shall then consider two branches, the
first being 10 sets long, the second being a branch of only / set, and shall join this branch to the first branch
by adding it as a subset of the ninth set; thus we will have two branches /0 sets long, both having 9 sets in
common and differing only in their leaf set. Again, we shall record the potential coupling. We shall then

consider the first branch again of /0 sets and a second branch of 2 sets, adding this second branch to the first



as a subset of its eighth set, and so on. The procedure is illustrated in figure 7. Note that, with each iteration,

we evenly redistribute all the elements over all sets.

1 2

3

4

10

Figure 7: Redistributing elements over two branches.

Plotting the potential coupling at each iteration then shows how this splitting of a branch in two affects

the system, see figure 8.
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Figure 8: Potential coupling as the branch-split moves down the first branch.

The x-axis of figure 8 shows not the set at which the split between the two branches occurs, but the

distance from the leaf set; thus as x=0, there is only one branch; at x=1, the second branch (one set long) is

split from the first branch at ninth set; at x=2, the second branch (two sets long) is split from the first branch

at the eighth set, etc. We can see from figure 8 that the potential coupling falls monotonically as the two

branches are split further down the sets of the first branch. In other words, to minimise the potential coupling

of the two branches, branches should be joined at the root set.

The second question we face concerning a set of multiple branches is: how does the potential coupling of



a set change as we increase the number of branches into which the elements are distributed?

Let us take 500 elements evenly distributed over a branch of 5 disjoint primary sets, again with d=1. This
branch has a potential coupling of 50500. Let us then take two branches of 5 sets each, again with 500
elements uniformly distributed over both branch and disjoint primary set, and with both branches joined at
the root set. This has a potential coupling of 25750. Let us continue like this, increasing the number of
branches but maintaining both the number of elements and the number of disjoint primary sets per branch;

figure 9 shows the potential coupling as the number of branches increases.
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Figure 9: Potential coupling as a function of increasing number of branches.

Figure 9 shows that the more branches we have, the lower the potential coupling. Unlike the number of
sets per branch, as shown in figure 5, there is no specific number of branches that minimises the potential
coupling of our system.

Certainly, at least concerning the application of encapsulation theory, an arbitrarily large number of
branches may not be practical. As applied to software development, for example, the above graph suggests
splitting a system into as many branches as possible, yet each branch can only communicate with others via
the single disjoint primary set of elements at the root of all branches, and in the experiment above, the
number of elements in the root set fell as more and more branches were added, thus rendering the experiment
slightly unrealistic.

Nevertheless, the above shows that, in general, branching is a good strategy for reducing potential
coupling, as can be shown by a simple comparison: proposition 1.14 of [1] shows that the minimum,
isoledensal potential coupling achievable within the absolute encapsulation context is given by:

|53 (G)|=n(2nd—1-d)
If we substitute into this equation the figures used in the experiment above (n=500, d=1) we find that
the minimum potential coupling achieved is 2/360. As can be seen from figure 9, radial encapsulation can

achieve a potential coupling far below anything possibly achievable by absolute encapsulation.



6. Conclusion.

This paper introduced radial encapsulation and showed how the potential coupling of an encapsulated set,

radially encapsulated, changed by splitting the set into branches.

7. Appendix A

Many of the propositions presented here necessarily contrast the potential coupling of absolute
information-hiding with that of radial information-hiding. To avoid confusion we must adapt notation
slightly. Wherever absolute information-hiding is concerned, we shall append the word, "Absolute;"
wherever radial information-hiding is concerned, no extra words shall be appended. Thus, the potential
coupling within the radial context is simply called, "Potential coupling," whereas the potential coupling
within absolute information-hiding is called, "Absolute potential coupling."

Similarly, wherever s is used to denote potential coupling we shall introduce the superscript, "ab," to
indicate potential coupling of an absolute information-hiding context; the absence of such a superscript will

indicate potential coupling of radial information-hiding. For example, the radial information-hiding external

s (G)‘ ; the absolute information-hiding

ex

potential coupling of encapsulated set G will be denoted

s(G)

external potential coupling will be denoted

7.1 Definitions
[DS8.1] Let s..(Q;) be the set of ordered pairs formed by the Cartesian product of all elements in the
disjoint primary set of Q; with all elements of V that are not also members of the primary set Q,. This is

called the external potential coupling set of Q;; the external potential coupling of Q;is cardinality of this set.

Thus:
5.(0,)=K;X(V\Q))
[D8.2] Given primary set Q;, tree T,of Q,, written 7,(Q;), is set of all disjoint primary sets that are subsets
of Q;. Thus:

T.(0)=(VK;:K;cQ,}
For example, if Q,=Q; and Q,<0Q; ,then Tr(Ql.)ZfK,-,Kj,Kk} . T,(Q) is represented in

figure 10.



Figure 10: The tree T,(Q;).

The primary set Q; of T,(Q;) is also called the root primary set. A primary set of a branch with no subsets
is called a leaf set.
A branch Q,, written B(Q,), is a tree whose every primary set is the root set, a leaf set or has only one
"parent" superset and one "child" subset, or:
B(Q)=[K;:K,cQV K,V 0,0,,0#0,(0,c0,A0,c0)—(0,c0,V0,<0,)]

Thus figure 10 is also a branch.
7.2 Propositions

Proposition 8.1
Given an encapsulated set G and given that the i primary set is Q;, the external potential coupling of Q;

is a subset of the absolute potential coupling of Q;, or:

Sex(Qi)CS:)lc)(Qi)

Proof:

By definition [D1.9] in [1], the absolute potential coupling set of Q; is the set of ordered pairs formed by
the Cartesian product of all elements in the disjoint primary set of Q; with all elements of V that are not also
members of the disjoint primary set of Q;:

sz.f(Qi):KiX(V\Ki) ()

By definition [D8.1], the potential coupling set of Q; is the set of ordered pairs formed by the Cartesian
product of all elements in the disjoint primary set of Q; with all elements of V that are not also members of
the primary set Q::

Su(@)=KX(VNQ)) (i)

By definition [D1.5] the disjoint primary set K; is the set of all elements in Q; but not in any primary



subset of Q;, thus K is a subset of Q;:
K,cQ, (i)
From (iii) it follows that:
VNQ,cV\K, (iv)
Take the Cartesian product of K; with both sides (iv) gives:
KX(V\NQ,)cK X(V\K,) (V)

Substituting (i) and (ii) into (v) gives:

56:(Q))=s:(0Q)

QED

Proposition 8.2
Given an encapsulated set G and given that the i primary set is Q;, the external potential coupling set of

0 is disjoint the external potential coupling set of all other primary sets, or:
VQ," Qj) Ql;éQj '.sgx(Qi)msex(Qj):ﬂ

Proof:

By proposition 1.3.10 in [1], the external potential coupling set of Q; is disjoint the external potential
coupling set of all other primary sets, or:

V0.0,,0,#0,:5:(0)Ns.(Q)=8 ()

By proposition 8.1, the external potential coupling of Q; is a subset of the absolute potential coupling of

Q,, or:
5 ()5 (Q) ()
Substituting (ii) into (i) gives;
V0,.0,.0,#0Q;:5,(0)Ns,(0,)=0
OED

Proposition 8.3

Given an encapsulated set G and given that the i" primary set Q,, the external potential coupling of G,

s.(G)| . is given by:

5.(G)=2"]s..(0))

r
i=1

Proof:
By definition [D1.12] of [1], the external potential coupling of Gis:

r

5.(G)=Us.(0) @

i=1

Taking the cardinality of both sides of (i) gives:



sx<G>\= C)s

Q,.>\

ﬂs (Qi+l)| (ii)

By proposition 8.2, the external potential coupling set of any primary set is disjoint from every other
external potential coupling set, thus:

r—1

2

i=1

5.(0)N5,.(Q,,,)|=0 (i)

Substituting (iii) into (ii) gives:

GI=X}.(0)

QED

Proposition 8.4
Given an encapsulated set G and given that the i primary set Q,, the external potential coupling set of Q;

is disjoint from the internal potential coupling set of Q;, or:
YV Q,:5,.(0)ns,(0,)=0
Proof:

By proposition 1.3.13 of [1], the external potential coupling set of Q; is disjoint from the internal

potential coupling set of Q;, or:

VQ,:s8(0)NsH(0)=0 (@

As there is no difference between the internal potential coupling and the absolute internal potential

coupling, then:
Sin(Qi):S?S(Qi) (ll)

From proposition 8.1, the external potential coupling of Q; is a subset of the absolute potential coupling

of Q,, or:
s.(Q,)<s5(Q) (i)
Substituting (ii) and (iii) into (i) gives:
VQ,:s5,.(0)0s,(0,)=0

QED

Proposition 8.5

Given an encapsulated set G and given that the i primary set is Q;, the external potential coupling set of



Q; is disjoint from the internal potential coupling set of all other primary sets, or:
V0,.0,,0,#0;:5.(0)0s,(0)=0
Proof:

By proposition 1.3.14 of [1], the external potential coupling set of Q; is disjoint from the internal

potential coupling set of all other primary sets, or:
V0,.0,,0#0;:5:(0)Ns!(Q)=8 ()

As there is no difference between the internal potential coupling and the absolute internal potential

coupling, then:
sin(Q)=50,(Q) (i)

From proposition 8.1, the external potential coupling of Q; is a subset of the absolute potential coupling

of Q,, or:
5. (Q)cse(Q) (i)
Substituting (ii) and (iii) into (i) gives:
VQ,,0,,0#0;:5.(0)Ns,(0))=8

QED

Proposition 8.6
Given an encapsulated set G and given that the i primary set is Q;, all external potential coupling sets are

disjoint from all internal potential coupling sets, or:
in’ Qj"sgx(Qi)mSin(Qj):H
Proof:

From proposition 8.4, the external potential coupling set of Q; is disjoint from the internal potential

coupling set of Q;, or:
VQ,:5.(0)0s,(0)=0 (@)

From proposition 8.5, the external potential coupling set of Q; is disjoint from the internal potential

coupling set of all other primary sets, or:
From (i) and (ii) it follows that:

VQ,.0;:5.(0)0s,(0,)=0



QED

Proposition 8.7

th

Given an encapsulated set G of r primary sets, and given that the i primary set is Q,, the potential

coupling of Q; is the sum of the external potential coupling sets of Q; and the internal potential coupling of

i, O

|S(Qi)|: S Q)| +5:,(Q))

Proof:
By proposition [D1.10] of [1], the potential coupling set of Q; is given by:
s(Q))=s5,,(0)Us..(Q)

Taking the cardinality of both sides of (i) gives:

|s(Q)|=]s..(Q)Us..(Q))

= |s;,(Q)|+

Sex(Qi)|_|Sin(Qi)msex(Qi)| (i1)

By proposition 8.6, all external potential coupling sets are disjoint from all internal potential coupling

sets, or:
V0,.0;:5.,(0)0s;,(Q)=8 (i)
Substituting (iii) into (ii) gives:

|S(Qi)|: +

5.(Q;)

$i(Q)

QED

Proposition 8.8
Given an encapsulated set G of r primary sets, the potential coupling |s (G)| of G is the sum of the

internal potential coupling of G and the external potential coupling of G, or:

s(G)=

Sin(G>|+

Se(G))

Proof:
By definition [D1.13] of [1], the potential coupling set of G is given by:
s(G)=s,,(G)Us, (G) (@)

Taking the cardinality of both sides gives of (i) gives:

s(G)=

Sin(G)Usex(G)|

Sin(G)“"

5. (G =

5:(G)Ns, (G)| i)



By definition [D1.11] of [1], the internal potential coupling set of G is given by:
5,(G)=Us,,(Q) (v
i=1
By definition [D1.12] of [1], the external potential coupling set of G is given by:
5.(G)=U s, (Q)
i=1

Thus from (iv) and (v):

5(6)N5,(6)=U 5,(2)nUs.(Q) o

From proposition 8.6, all external potential coupling sets are disjoint from all internal potential coupling

sets, or:
V0Q,,0,:5,(Q)Ns,(Q)=4  (vii)
Substituting (vii) into (vi) gives:
5., (G)Ns, (G)=8  (viii)
Substituting (viii) into (iii) gives:

s(G)=

SelG)

ex

S

in

(G)|+

QED

Proposition 8.9
Given an encapsulated set G of r primary sets and given that the i primary set is Q;, the potential
coupling |s (G)| of G is the sum of the internal potential coupling of all Q; and the external potential

coupling of all Q,, or:

J

|S(G)|:Z{ Sin(Qi)|+ Sex(Qi)

Proof:

By proposition 8.8, the potential coupling |s (G)| of G is the sum of the internal potential coupling of

G and the external potential coupling of G, or:

s(G)|= 5.(G)| @

sin(G)“"

By proposition 1.3.11 of [1], the internal potential coupling of G, sin(G)‘ , 1s given by:

(i)

Sin(G)|:Z |sm(Qi)



By proposition 8.3, the external potential coupling of G, sex(G)‘ , is given by:

s (G=D]s. Q)] i)

Substituting (ii) and (iii) into (i) gives:

r

Sin(Qi)|+Z

i=1

|s<G>|=Z

5.(Q))

- Slsalel+b.e)

QED

Proposition 8.10
Given an encapsulated set G of r primary sets and given that the i primary set is Q,, the potential

coupling |s (G)| of G is the sum of the potential couplings of all Q;, or:

s(G1=X (e

Proof:

By proposition 8.9, the potential coupling |s (G)| of G is the sum of the internal potential coupling of

all Q; and the external potential coupling of all Q;, or:

|s<G>|=2[s,.,,<Qi>|+sgx<Q,.>} 0

i=

By proposition 8.7, the potential coupling of Q; is the sum of the external potential coupling sets of Q;

and the internal potential coupling of Q,, or:

s(Q)|= +

5.(Q))

Sin(Qi)| (11)

Substituting (ii) into (i) gives:

|s<G>|=§\s<Qi>

QED

Proposition 8.11.

Given a uniformly-distributed branch B in encapsulated set G of r disjoint primary sets and given that the

i" disjoint primary set K; contains |K l.| elements and has an information-hiding violation of d, the external



potential coupling of B, ‘Sex(B)‘ , is given by:

n(r—1)d
|5..(B) :%

Proof:

By definition [D8.1], the external potential coupling of Q; is the number of ordered pairs that may be
formed from this disjoint primary set towards the violational elements of all other disjoint primary sets that
are not a subset of Q;, or:

5., (Q)=K,X(VN\Q,) ()

Consider the root primary set Q.

As Q, is the root primary set, however, all other disjoint primary sets in this branch are subsets of Q,,
thus the external potential coupling of the root disjoint primary set is O.

The external potential coupling of the Q; is then the number of ordered pairs that may be formed towards
K.

The external potential coupling of the Q; is the number of ordered pairs that may be formed towards K

and K5, etc.

Thus:

‘Sex<Q1)‘:0

[5.(Q,) = Kf[v (K,)
Sex(QS)‘:‘K3’ (‘V(Kz)““‘v([{l)‘)
‘ng(Q4)‘:‘K4‘(‘V(K3)‘HV(Kz)‘HV(Kl)’) @)
Sl Q) =K (v (K, )|+ (K, )|+ v (K, | +Hv (K )|
As B is a uniformly-distributed set then by definition [D1.14] in [1]:
V(K= (K] ==y (K,)=d i)

Substituting (ii) into (i) gives:

|5..(0,)=0

‘Sex(Qz)‘:‘Kz‘d
Sex(Q3)‘ :‘K3‘(2d)
so(Qu=IK|(Bd)

5.(0,)=|K,|((r=1)d)

By proposition 1.3.12 in [1], the external potential coupling of set B, written

SEX(B)‘ , is the sum of

the external potential coupling of Q;, or:



r

su(B) =2,

i=1

Sex ( Qz) (IV)

Substituting (iii) into (iv) gives:
|5, (B)=|Kd+|K{2d + K |3d+..+|K |[(r—=1)d (v)
As B is a uniformly-distributed set then by definition [D1.14] in [1]:

K |=|K)=..=|K,

=2 )
r
Substituting (iv) into (v) gives:

|5,.(B)=2d+22d+23d+..+ 2 (r—1)d
e r r r r

= La(1+2. . 4r-1)

QED

Proposition 8.12.
Given a uniformly-distributed branch B in encapsulated set G of n elements and of r disjoint primary

sets, with each disjoint primary set having an information-hiding violation of d, the potential coupling of B,

s,(B)| ,is given by:

Proof:
By proposition 1.3.17 in [1], the potential coupling of set B, written ‘s (B )‘ , 1s the sum of the internal

and external potential coupling of B, or:

|s(B)|=|s,,(B)+s.(B] ()

By proposition 1.6 in [1], the internal potential coupling of B, |s;,(B )‘ , is given by:

s,.n(B)\:n<§—1) (ii)

S.(B)| . is given by:

sulB) =" 1e

By proposition 8.11, the external potential coupling of B,

(iii)

Substituting (ii) and (iii) into (i) gives:



s(Bl=n(2 1)+ 20
_on_ o (r=1)d
- n(r ! 2 )

QED

Proposition 8.13.
Given a uniformly-distributed branch B in encapsulated set G of n elements and of r disjoint primary
sets, with each disjoint primary set having an information-hiding violation of d, the number of disjoint

primary sets r;, that isoledensally minimises the branch's potential coupling is given by:

2n
Fia= d

Proof:
By proposition 8.12, the potential coupling of B is given by:
n r—1)d )
5.(B) =n<7—1+—( 5 M)y

To find the number of disjoint primary sets that isoledensally minimise the potential coupling,

differentiate (i) with respect to r and set to zero:

0 o . (n (r—1)d
L B)=—- — 1+ =
25, (B) =L {n(2-1+ =0
o n (r—1)d
—-—(——14+4—)=0
Gr(r 2 )
—n d
—+—=0
P2
dr
—n+—=0
T
- d
2n
r,,=1—
ild d

QED

Proposition 8.14.
Given a uniformly-distributed branch B in encapsulated set G of n elements and of r disjoint primary
sets, with each disjoint primary set having an information-hiding violation of d, the branch's minimum

isoledensal potential coupling is given by:



‘Sild(B)‘zg(\/%_z_d)

Proof:
By proposition 8.12, the potential coupling of a uniformly-distributed branch is given by:

B)]:n(ﬁ—ljti(r_zl)d

By proposition 8.13, the number of disjoint primary sets r;, that isoledensally minimises this branch's

) @

potential coupling is given by:

2n ..
Fia= d (i)
Substituting (ii) into (i) gives:
(v
B)= ——1+
sulB) H(Jz—“ —)
d
di——d
) n(n 4y td \/; )
2n 2
- 1Jr\/2dn d
2 2
2v2Vdn—2-d
= n( )
2

QED
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