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Abstract

This paper investigates how the hidden elements of a single radial branch should be distributed so as to

minimise the branch's potential coupling.
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1. Introduction

In the absolute encapsulation context when an encapsulated set is uniformly-distributed in violational
elements, then its potential coupling is minimised when it is also uniformly-distributed in hidden elements
(see proposition 1.11 in [1]). In the radial encapsulation context, however, this is not the case. This paper
demonstrates this phenomenon using an example branch and derives the equation showing the hidden
element distribution that achieves a minimum potential coupling.

This paper considers sets of radial information-hiding only.

2. Selected branch potential couplings

Consider the branch shown in figure 1, showing a branch of three disjoint primary sets, where the
information-hiding and the information-hiding violation of the sets are shown within their representative

symbols.
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Figure 1: A branch of three disjoint primary sets.

Thus, taking the root set, K;, for example, we see that K; has 10 violational elements, |v (K, )‘ =10,

and 5 hidden elements, |h(K 1 )| =5; as we are concerned here with uniform violational distributions, we
will discuss the specific violation of each set, and use the variable that we normally use for specific
violations, hence d=10, though the meaning of both is, of course, the same. We note that violational and
hidden elements of the branch are distributed uniformly throughout the sets.

Let us calculate the potential coupling of this branch.

The potential coupling of K; is the sum of its internal and external potential couplings. The internal
potential coupling of K; is the total number of contained elements multiplied by this number minus one, i.e.,
15x14=210. The external potential coupling of K; is the total number of contained elements multiplied by the
total number of violational elements it can see "below" it, i.e., /5x(10+10)=300. So the potential coupling of
K;is 210+300=510.

As K, has the same number of contained elements then it will have the same internal potential coupling
as K, i.e., 210. K; can only see /0 violational elements "below" it, so its external potential coupling is
15x10=150. So the potential coupling of K> is 210+150=360.

K, has the same internal potential coupling as the other two, i.e., 210, and K has, like all root sets, no
external potential coupling (there are no sets "below" it for it to see), so its potential coupling is the same as
its internal potential coupling, 2170.

The branch's potential coupling is then: 510+360+210=1080.

We know that, in the absolute encapsulation context, potential coupling is minimised (ignoring A.M.C.s)
when both the violational and hidden element are distributed uniformly over all sets. Let us test to see
whether this also holds in the radial encapsulation context: let us move a hidden element from K to K, see

figure 2.
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Figure 2: A branch of three disjoint primary sets.

Now let us calculate the potential coupling of this modified branch.

The potential coupling of K is unchanged.

The potential coupling of K, has now fallen from 360 to 14x13+14x10=322.

The potential coupling of K, has now risen from 2/0 to 16x15 = 240.

The branch's total potential coupling has now fallen from /080 to 510+322+240=1072.

Thus by moving a hidden element, thereby rendering the branch non-uniformly distributed in hidden
elements, we have reduced the branch's potential coupling. We note that the branch is still uniformly
distributed in violational elements. This then raises the obvious question: given a branch that is uniformly
distributed in violational elements, what distribution of hidden elements will minimise its potential coupling?

This question is of practical relevance as we suspect that a branch's minimum potential coupling will be
achieved when each set in the branch has the minimum number of violational elements, and that minimum is
one. In putting one element in each set, however, we are automatically uniformly distributing the violational
elements, hence the configuration of a branch at its minimum potential coupling is one in which it is
uniformly distributed in violational elements.

It can be shown that, to attain the minimum potential coupling in this case, the number of hidden
elements in the i" disjoint primary set is given by the following equation (see proposition 9.12):

|h(Ki)|=?+(r_3;2l)d

With this equation we can calculate the number of hidden elements in each of the three sets examined
above to minimise the potential coupling.

K; should contain the following number of hidden elements:

\h(KS)\:ﬁer

=0
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K; should contain the following number of hidden elements:
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K; should contain the following number of hidden elements:
\h(K1)|=%+—(3_3;2) 10 _10

The branch thus configured is shown in figure 3.
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Figure 3: A branch non-uniformly distributed in hidden elements with minimised potential coupling.
Calculating the potential coupling of this minimised branch we see the following.
The potential coupling of K is 10x9+10x20=290.
The potential coupling of K is 15x14+15x10=360.
The potential coupling of K, is 20x19 = 380.
The branch's total potential coupling is 290+360+380=1030, down from the original, uniformly
distributed figure of /080.

3. Observations

The reduction of potential coupling achievable using the equation above to guide hidden element
distribution is a function of the specific violation, d, the number of violational elements per disjoint primary
set. In a well-encapsulated set, d is small, therefore the reduction of potential coupling achievable using this
distribution will not be great in well-encapsulated sets of sets.

It is noteworthy, however, that this hidden element distribution favours packing the hidden elements
towards the lower end of the branch. In software development, for example, this argues against, "Top
heavy," branches and recommends that leaf subsystems and leaf packages should not contain an above

average number of program units.



4. Conclusion

When a branch is uniformly distributed in violational elements, its minimum potential coupling is not
achieved by also uniformly distributing its hidden elements. Instead, an equation describes the hidden
element distribution to achieve this minimum potential coupling and this equation suggests placing more

hidden elements towards the lower part of the branch than the higher.
5. Appendix A
5.1 Propositions

Proposition 9.1
Given a branch B in encapsulated set G of n elements and of r disjoint primary sets, with each disjoint

primary set having an information-hiding violation of d, the internal potential coupling of the i primary set,

$in(Q))

, is given by:

“+2d|h(K )|~ |n(K,)|-d+d®

5:.,(Q;)

:‘h(Ki)

Proof:
By definition [D1.2] in [1], given a primary set Q. the internal potential coupling ‘Sin(Qi)‘ is given by:
saQ)=[K|(K|=1) @)

By definitions [D1.2], [D1.6] and [D1.7] of [1], the elements in K; are those in the intersection of K; with
H and V, or:

:‘Ki

K=v(K,)Uh(K,) (i)
By definition [D1.1] in [1], H and V are disjoint so taking the cardinality of (ii) gives:
K |=|v(K)|+|n(K)| i)

By definition, each disjoint primary set has an information-hiding violation of d, so substituting into (iii)

gives:

K |=d+|h(K,)

(iv)
Substituting (iv) into (i) gives:

5ia(Q;)
= |n(K [ +2d|n(K,)-|n(K,)|-d+d"

:(d+|h(Ki)|)(d+|h<Ki)|_1)

QED



Proposition 9.2
Given a branch B in encapsulated set G of n elements and of r disjoint primary sets, with each disjoint

primary set having an information-hiding violation of d, the external potential coupling of the i primary set,

sex(Ql.)| , is given by:

Q=K - K -

Proof:

By proposition 8.11 in [3], given a primary set Q. of a single branch the external potential coupling is

sex(Q,.)| given by:

S Q1)
By definitions [D1.2], [D1.6] and [D1.7] of [1], the elements in K; are those in the intersection of K; with
Hand V, or:

=|k]|((i-1)d) @

K=v(K)Uh(K;) (i)
By definition [D1.1] in [1], H and V are disjoint so taking the cardinality of (ii) gives:
K |=|v(K)|+|n(K)| i)

By definition, each disjoint primary set has an information-hiding violation of d, so substituting into (iii)

gives:

K |=d+h(K,) (v

Substituting (iv) into (i) gives:

Sex(Qi)|:<d+‘h(Ki) )((i—1)d)
= dilh(K)|-d|h(K )|+d"i—d’

QED

Proposition 9.3
Given a branch B in encapsulated set G of n elements and of r disjoint primary sets, with each disjoint

primary set having an information-hiding violation of d, the potential coupling of the i primary set,

|s(Q)

, is given by:

Is(Q))|=|n (K[ —|n(K)|—d+d|h (K )|+dilh (K )|+d*i

Proof:

5in(Q)
—d+d*> (@)
5.(Q;)
—d|h(K)|+d’i-d" (i)

By proposition 9.1, the internal potential coupling of the i primary set,

5:.(0))

By proposition 9.2, the external potential coupling of the i primary set,

Sex(Qi)|:di‘h(Ki)

, is given by:

=|n (K |+2d|h(K,)|~|h(K,)

, is given by:




By proposition 8.7 in [3], the potential coupling of Q; is the sum of the external potential coupling sets of
Q; and the internal potential coupling of Q,, or:
|s(0)
Substituting (i) and (ii) into (iii) gives:

|s(Q,)|=|r (K[ —|n(K,)|—d+d|h(K )|+di|h(K,)

- Sex<Qi) +

$:,(Q;)

(iii)

+di

QED

Proposition 9.4
Given a branch B in encapsulated set G of n elements and of r disjoint primary sets, with each disjoint

primary set having an information-hiding violation of d, the potential coupling of B, |s ( B)| , is given by:

|S(B)|:§ |h(1<,.)|2—§ |h(Ki)|—rd+d§‘h(Ki)‘+d§ i\h(K,.)\erzZi

Proof:

branch is the sum of the potential couplings of all its sets, or:

s(BI=2Is(Q,)] @
i=1
By proposition 9.3, the potential coupling of the i primary set, |s (Ql.)| , is given by:
Is(Q,)|=|n (K[ —|n(K)|—d+d|h (K )|+dilh (K )|+d*i (i)
Substituting (ii) into (i) gives:

|s(B)|=Z (|n(K ) =|n(K )|~ d+d|h(K )| +dilh(K )|+di)

- S-S K a3 (K iKY
i=1 i=1 i=1 i=1 i=1

QED

Proposition 9.5
Given a branch B in encapsulated set G of n elements and of r disjoint primary sets, with each disjoint

primary set having an information-hiding violation of d, the potential coupling of B, |s (B)| , is given by:
|S(B)|:‘h(K1)‘2+Z |h(Ki)|2_‘h<K1)|_z |h(Kl.)|—rd
i=2 i=2
+d|h(K,)|+d Z \h(Kl.)\+d\h(K1)|+er: i\h(Kl.)HdZZr: i
i=2 i=2 i=2

Proof:

By proposition 9.4, the potential coupling of B, |s (B)| , is given by:



|s(B)|:g, Ih(K,»)|2_g Ih(Ki>|—rd+dg ‘h(K,.)Hdil i‘h(Ki)“"dzi:,i i
By definition: _ ) - = -
Zr;x’:xl*z x, ()
Applying (ii) to (i) gives: _ )

S SN WATS T

+dzzr:i
i=2

+d|h<1<l>\+d2 (K ))|+d|n (K )|+d Z ik (K )

—rd

|h(K1)\2+§\h(Ki)z—\h(Kl)\—g\h(Ki)

+2d|h(Kl)|+er: |h(Ki)|+er: i|h(Ki)‘+dzzr: i
i=2 i=2 i=2

QED

Proposition 9.6
Given a branch B in encapsulated set G of n elements and of r disjoint primary sets, with each disjoint

primary set having an information-hiding violation of d, the number of elements in B is given by:

+rd

”:Z‘h(Kz)

Proof:
By definition, the number of elements in a branch is the sum of the number of elements in all its disjoint

primary sets, or:

Bl=n=2[K]
By definitions [D1.2], [D1.6] and [D1.7] of [1], the elements in K; are those in the intersection of K; with
Hand V, or:
K,=v(K,)Uh(K,) (i)
By definition [D1.1] in [1], H and V are disjoint so taking the cardinality of (ii) gives:
K [=|v(K)|+|n(K)| i)

By definition, each disjoint primary set has an information-hiding violation of d, so substituting into (iii)

gives:

K |=d+|n(K,)

(iv)

Substituting (iv) into (i) gives:



= > d+) |n(K))
i=1 i=1

= rd+z |h(K1)|
i=1

QED

Proposition 9.7
Given a branch B in encapsulated set G of n elements and of r disjoint primary sets, with each disjoint

primary set having an information-hiding violation of d, the number of information-hidden elements in the

first primary set, ‘h(K { )| , is given by:

—rd

|h<K]>|=n—§ h(K,)

Proof:

By proposition 9.6 the number of elements in B is given by:

nzg‘h(l(i)Hrd
= ‘h(Kl)‘Jr;‘h(Ki)H—rd

—rd

ik, == [A()

QED

Proposition 9.8
Given a branch B in encapsulated set G of n elements and of r disjoint primary sets, with each disjoint

primary set having an information-hiding violation of d, the square of the number of information-hidden

elements in the first primary set, ‘h(K | )‘2 , is given by:

|h(1<])\2:n2—2n; Ih(K ) —2rdn+; |h(Kt.)|Z; |h(K,.)|+2rdZZ: h(K,)|+r" d’

Proof:
By proposition 9.7 the number of information-hidden elements in the first primary set, ‘h( K, )‘ , 18
given by:

(K== (k)| ~ra @
=2



Squaring both sides of (i) gives:

\h(Kl)f:nz—zn;|h(K,.)|—2rdn+;|h |Z\h |+2rdZ|h M+ d

QED

Proposition 9.9
Given a branch B in encapsulated set G of n elements and of  disjoint primary sets, with each disjoint

primary set having an information-hiding violation of d, the potential coupling of B, |s ( B)| , is given by:

Bl=n"=2n |h(K)|-2rdn+ |n(K \Z|h \+2rd2\h |+rd+2\h )
i=2 i=2

—n+2dn—dy |h(K,)|—2rd" +dy i\h(Kl.)HdzZr:i
i=2 i=2 i=2

Proof:

By proposition 9.5 the potential coupling of B, |s(B)| , is given by:

B>|=\h<1<1>|2+§|h<1<,.>|2—\h<1<1>|—§ ()|~

, Q)

+2d|h(1<1)\+dzr‘, |h(K,)|+d Z ilh(K)|+d®
i=2 i=2

i=2
By proposition 9.7 the number of information-hidden elements in the first primary set, ‘h( K, )‘ , 18

given by:

&) =n=Y (k)| -ra @
i=2

By proposition 9.8 the square of the number of information-hidden elements in the first primary set,

(K, )|2 , is given by:

‘h(K1)|2=n2—2nZ |h(Kl.)|—2rdn+Z ‘h
i=2 i=2

Substituting (i1) and (iii) into (i) gives:

\+2rd2\h

(iii)

B\=n’=2n) |n(K)|-2rdn+ |h(K K)|+r’d +Z h(K,)f
i=2 i=2
- n—Z‘h(Kl.)‘—rd)—z‘h(Ki)|—rd
i=2

+2d(n Z|h J|—rd)+d ). |h(K
i=2

+d2 in(K ) +d*Y i
i=2 i=2




n’=2n ) |h(K,)—2rdn+ ) |n(K
i=2 i=2
—n+i |h(1<,.)|+ rd—z \h(K,.)|—rd
i=2 i=2
+2d n—de |h(K,)|—2rd*+d Z |h(K )|

+d2 (K

n’=2n ) |h(K,)~2rdn+ ) |h(K
i=2 i=2

—n+2dn—dzr:‘h(K)—
i=2

(Kl.)|+d Zi

QED

Proposition 9.10
Given a branch B in encapsulated set G of n elements and of r disjoint primary sets, with each disjoint

primary set having an information-hiding violation of d, the number of information-hidden elements in the i*

rimary set, |A(K,)| ,where i#1 , which minimises the potential coupling of B is given by:
p y i

|n(K

(i—1)d
=

:‘h(Kl)

Proof:

By proposition 9.9, the potential coupling of B, |s (B)| , 1s given by:

B\=n’=2n) |h(K,)|-2rdn+) |h(K
i=2 i=2

\+2rdz h(K)|+r*d +Z n(K,)]
—n+2dn—-dy. |h(1<,.)|—2rd +dZ i‘h(K,.)HdzZr: i
i=2 i=2 i=2
®
To find the value of |h(K l)| which minimises this potential coupling we must differentiate (i) w.r.t.

|h(Kl)| and set to zero:

_ols)l _ =—2n+2) [n(K)+2rd+2|h (K )|—d+di=0
on(K, .. pu]

2K, =2n-22 |n(K )|-2rd+d—di i)
i=2

By proposition 9.7, the number of information-hidden elements in the first primary set, |h(K | )‘ , 18

given by:



|h(K1)|:n—§ h(K )| ~rd

> h(K =n—|n (K )|-ra ™
i=2
Substituting (iii) into (ii) gives:
2|h(K,)|=2n—2(n—|h(K,)|~rd)~2rd +d—di
= 2n—2n+2Jh(K,)|+2rd—2rd+d—di

(i-1)d

n(k,) 5

:‘h(Kl)‘_

QED

Proposition 9.11
Given a branch B in encapsulated set G of n elements and of r disjoint primary sets, with each disjoint

primary set having an information-hiding violation of d, the number of information-hidden elements in the

first primary set, ‘h(K { )| which minimises the potential coupling of B is given by:

_n (r=5)d
|h(K1)|_7+T

Proof:

By proposition 9.7, the number of information-hidden elements in the first primary set, |h(K | )‘ , 18
given by:
—_ G
(K )|=n-2, |h(K,)|-rd
i=2
By proposition 9.10, the number of information-hidden elements in the i primary set, ‘h(K l)| , where

i#1 , which minimises the potential coupling of B is given by:

—1)d
\h(K,-)\=\h<K]>\—(’2) (i)
Substituting (ii) into (i) gives:
(& =n=3 (k|- =) g
2
i=2
— r r d. r d
n—2 |n(K )+ 5= S—rd
i=2 22 22
n—(r—= 1)k (X Ly )Ly



~di d
n—rln(K )|+ (K )+ 2 T~ 5 =45 —rd
i=1

7

= d~ . rd
n—r|h(K1)‘+5; 1—7—1”0,':0

dr(r+1) 3rd
+_ —_——

= n—r|h(K) 55 5
rir+1)d 3rd
r|h(K1)‘=n+ ( 1 ) )
n (r+l)d 3d
hK )|l=—+—"——"—
‘( 1)| r 4 2
= n rd+d—6d
r 4
= 2+(r_5)d
r 4

QED

Proposition 9.12
Given a branch B in encapsulated set G of n elements and of r disjoint primary sets, with each disjoint

primary set having an information-hiding violation of d, the number of information-hidden elements in the i*

primary set, |h(K ;)| which minimises the potential coupling of B is given by:

_n (r—3-2i)d
|h(Ki)|_r+—4

Proof:
By proposition 9.10, the number of information-hidden elements in the i primary set, ‘h(K l)| , Where

i#1 , which minimises the potential coupling of B is given by:

(i—-1)d
2

|A(K)|=|h(K )~ 0]

By proposition 9.11, the number of information-hidden elements in the first primary set, |h( K, )‘

which minimises the potential coupling of B is given by:
n (r=5)d ..
n(k, =2+ 2204 G
r 4

Substituting (ii) into (i) gives:

£+(r—5)d (i—1)d
r 4 2

n (r—5-2i+2)d

—+

r 4




QED
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